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The material here is from Chapter 13 in No-
cedal and Wright, but some of the geometry
comes from Griva, Sofer, and Nash.

Recall the standard form for a linear program:

minimize cTx
subject to Ax = b

x ≥ 0.

The feasible solution of an LP define a polytope:

F = {x ∶ x ≥ 0,Ax = b.}

What is a polytope?

Wikipedia:Polytype
In elementary geometry, a polytope is a geometric object with flat sides,
which exists in any general number of dimensions. A polygon is a polytope
in two dimensions, a polyhedron in three dimensions, and so on in higher
dimensions (such as a polychoron in four dimensions). Some theories
further generalize the idea to include such things as unbounded polytopes
(apeirotopes and tessellations), and abstract polytopes.

Here, we will only consider bounded polytopes.
Consider the linear program:

minimize
x1 ,x2

−x1 − 2x2
subject to x1 ≤ 3

−x1 + 2x2 ≤ 7
−2x1 + x2 ≤ 2
x1 , x2 ≥ 0.

Show Julia figure for Ax ≤ b, x ≥ 0, see the Lecture-14-LP-Polytope.jl file.

Discuss or contemplateWhat are the slack variables that are introduced when we
convert this problem into standard form?

A vertex of the polytope is any point f ∈ F such that

f /= αy + (1 − α)z for any y, z ∈ F .

Vertices are important because of the following result:

THEOREM 1 (Fundamental Theorem of Linear Programming)

If an LP has a solution, then a solution must occur at a vertex of the feasible polytope.

Discuss Find a partner, and discuss this theorem. I claim that the reason this theorem
is true is “obvious” from these pictures. Think about the gradient and objective.
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Proof (This is a sketch, as it doesn’t handle the case of unbounded directions)There are
really two things in the proof. First, we need to show that any feasible point can be
expressed as a linear combination of vertices. Second, we need to show that any solution
can be expressed as the sum of a single vertex.

Step 1 Any feasible point f ∈ F can be written as:

f =∑
i
α iv i

where v i is a vertex of the feasible polytope and ∑i α i = 1. (Assume that A is full-rank,
if not, we can replace it by a full-rank matrix.) The formal argument here is somewhat
tedious. Let x be a feasible point. If it’s already a vertex, we are done. If it isn’t a vertex,
then we can find y, z with the same non-zero structure as x such that x = αy + (1 − α)z.
Let p = y − z. Note that Ap = Ay − Az = b − b = 0. Note also that p has the same
non-zero structure as x. We can then use this p to find two new points f1 = x+ γ1p, γ1 > 0
and f2 = x + γ2p, γ2 < 0 that have one more zero component in them than in x. Hence
x = α1y1 + α2y2. Now we inductively repeat this argument on y1 and y2, and give them We are basically moving along the direction

p until we hit the constraint x = 0 in a single
component.

an additional non-zero component or find that they are a vertex. There are only a finite
number of non-zeros, so the argument must end with all points at vertices. Thus, we have
a convex combination of vertices.

See the figure in my notes that I drew on the board
Step 2 Again, we assume that the feasible set is bounded (which can be removed,

but it makes the argument more complicated, see the books.) Let x be a solution. Then
x = ∑i α iv i in terms of vertices by step 1. Now, pick out the vertex j which minimizes the
objective:

cTv j = min
i
{cTv i}.

Then v j must also be a solution because it is feasible and

cTy =∑
i
α icTv i ≥ cTv j

but y was a solution, so we must have equality. ∎

This theorem is the heart of the simplex method. What the simplex method does is
move between vertices of the polytope while improving the objective function. Because
one of those vertices must be the solution, the method will find it eventually.

There are two things we still need, however. The first is a way of dealing with vertices
of the polytope. The next theorem provides that. Second, we need a way of determining if
a vertex point is optimal. That’s covered in the next section.

The final step in the methods is to show the following characterization of vertices of
the feasible polytope:

THEOREM 2 Apoint v is a vertex of the feasible polytope if and only if it is a basic feasible point,
that is a point x such that x is feasible and there is a subset B of the indices {1, . . . , n} such
that B has m indices for the m equations in A, i /∈ B implies that xi = 0 and B = [Ai]i ∈ B
is non-singular (where Ai is the ith column of A).

This theorem is characterizing vertices by a subset of columns of the matrix A. This will
be our computational handle on vertices in the simplex method.

Proof If x is a basic feasible point that is not a vertex, then we can find feasible y and z such
that x = αy + (1 − α)z. Further note that y and zmust have the same non-zero structure
as x because y ≥ 0, z ≥ 0, and α, 1 − α > 0. This means we can write xB to be the vector of
non-zeros in x, and yB and zB likewise. Hence BxB = b but also ByB = BzB = b and thus
they are all the same via the non-singularity of B.

The other direction is just a formalization of the argument we gave before. If we
have a vertex that is not a basic feasible point, then we can find a direction p that stays
feasible and preserves the non-zero structure of v because the columns corresponding to
the non-zeros in v are linearly dependent. Thus, we can write v as a linear combo of these
feasible points and we have our contradiction.

See Equations 13.14 and 13.15 in Nocedal and Wright for more detail. ∎
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Again, let me reiterate the importance of this result. We can now use the fact that sets
of m indicies of the matrix A give rise to vertices of the feasible polytope.

Overview of Simplex Method The simplex method, then, moves from vertex to vertex
on the feasible polytope by adding and subtracting indicies from the subset B to move
between vertices. At every stage, it moves to another vertex with a non-increasing objective
value.

"Presolve" (Remove redundant rows from A)
"Phase 1" Find a feasible vertex / basic point

"Simplex" Find the dual variables / Lagrange multipliers for that point

While KKT conditions are not true

Move to another point

Find the dual variables / Lagrange multipliers for new point

The first step of finding a feasible vertex or basic point is called a Phase 1 solution.
We’ll cover that soon.

Columns to basic feasible points and Lagrange multipliers What we now need to
address is how to find the dual variables or Lagrange multipliers at a basic feasible point
(vertex). If we can get these (and we can) then we can determine when to stop the simplex
method. See Section 13.3 for more about this next

piece.Let x be a basic feasible point. Let B be the subset of columns at any basic feasible point.
Thne BxB = b and we can permute x into [xTB xTN]

T
, where xB are non-zero elements

(“the basic elements”) of x and xN = 0 be the zero elements (“the non-basic elements”).
Partition s (multipliers) and c (objective) conformally into sB , sN and cB , cN .

We can write:
Ax = BxB + NxN = b

where xB = B−1b and xB ≥ 0. We set sB = 0 because all the elements of xB handle that
portion of the constraint. We now use the remaining KKT conditions to find λ and sN .
Note that

BTλ = cB and NTλ + sN = cN .
The first equation defines λ because BT is non-singular. The second equation can then
be solved for sN . Consequently, we can find the dual variables for a solution. However, s
need not be non-negative.
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