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Thematerial here is from Chapter 6 in No-
cedal and Wright, and Section 12.3 in Griva,
Sofer, and Nash.

The idea behind Quasi-Newton methods is to make an optimization algorithm with
only a function value and gradient converge more quickly than steepest descent. That is, a
Quasi-Newton method does not require a means to evaluate the Hessian matrix at the
current iterate, as in a Newton method. Instead, the algorithm constructs a matrix that
resembles the Hessian as it proceeds.

In fact, there are many ways of doing this, and so there is really a family of Quasi-
Newton methods.

1 quasi-newton in one variable: the secant method

In a one dimensional problem, approximating the Hessian simplifies to approximating
the second derivative: f ′′(x) ≈ f ′(x+h)− f ′(x)

h . Thus, the fact that this is possible is not
unreasonable. Using a related approximation in a one-dimensional optimization algorithm
results in a procedure called the Secant method:

“xk+1 = xk −
1

f ′′(xk)
f ′(xk)”

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
One dimensional Newton

→ xk+1 = xk −
(xk − xk−1)

f ′(xk) − f ′(xk−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≈1/ f ′′(xk)

f ′(xk)

This new update is trying to approximate the Newton update by approximating the second
derivative information.

The secant method converges superlinearly, under appropriate conditions; so this idea
checks out in one-dimension.

2 quasi-newton in general

Quasi-Newton methods are line-search methods that compute the search direction by
trying to approximate the Newton direction:

“H(xk)p = −g”

without using the matrix H(xk). They work by computing

Bk “that behaves like” H(xk).

Once we compute xk+1, then we update Bk → Bk+1. Thus, a Quasi-Newton method has
the general iteration:

initialize B0, and k = 0
for k = 0, ... and while xk does not satisfy the conditions we want ...

solve for the search direction Bkpk = −g
compute a line search αk
update xk+1 = xk + αpk
update Bk+1 based on xk+1

We can derive different Quasi-Newton methods by changing how we update Bk+1
from Bk .
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3 the secant condition

While there are many ways of updating Bk+1 from Bk , a random choice is unlikely to
provide any benefit, and may making things considerably worse. Thus, we want to start
from a principled approach.

Recall that the Newton direction Hkpk = −g arises as the unconstrained minimizer of

mN
k (p) = fk + gTk p +

1
2p

THkp

when Hk is positive definite.
The model for Quasi-Newton methods uses Bk instead of Hk :

mQ
k (p) = fk + gTk p +

1
2p

TBkp

so one common requirement for Bk is that it remains positive definite. This requirement
is relaxed for some Quasi-Newton methods.

However, all Quasi-Newton methods require:

∇mQ
k+1(0) = g(xk+1)

and
∇mQ

k+1(−αkpk) = g(xk).
In other works, a Quasi-Newton method has the property that the gradient of the model
function mQ

k+1(p) has the same gradient as f at xk and xk+1.
This requirement imposes some conditions on Bk+1:

∇mQ
k+1(−αpk) = g(xk+1) − αkBk+1pk = g(xk) Ð→ Bk+1αkpk = g(xk+1) − g(xk).

Note that αkpk = xk+1 − xk . If we define:

sk = xk+1 − xk and yk = g(xk+1) − g(xk).

Then Quasi-Newton methods require:

Bk+1sk = yk ,

which is called the secant condition.
If we write this out for a one-dimensional problem:

bk+1(xk+1 − xk) = f ′(xk+1) − f ′(xk).

This equation is identical to the approximation of f ′′(xk) used in the secant method.
Quiz Is it always possible to find such a Bk+1? Suppose that Bk is symmetric, positive

definite. Show that we need yTk sk > 0 in order for Bk+1 to be positive definite. If Bk = 1
for a one dimensional problem, find a function where this isn’t true.

3.1 THE SECANT CONDITION & STRONG WOLFE
If the line search routine guarantees the Strong Wolfe conditions, then the update will

automatically satisfy the Secant condition.
Consider the Strong Wolfe conditions:

f (xk + αpk) ≤ f (xk) + αc1pT
k gk

∣g(xk + αpk)
Tp∣ ≤ c2gTk pk

The second condition implies:
gTk+1pk ≥ c2g

T
k pk .

Now consider yTk sk for a step that satisfies Strong Wolfe:

yTk sk = (gk+1 − gk)
T
(αpk) = αg

T
k+1pk − αg

T
k pk ≥ α(c2 − 1)g

T
k pk .

But, we know 0 < c2 < 1, so c2−1 < 0, and gTk pk < 0. Thus, we satisfy the Secant condition!
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4 finding the update

We are getting closer to figuring out how to find such an update. There are many ways
to derive the following updates, I’ll just list them and state their properties.

4.1 DAVIDSON, FLETCHER, POWELL (DFP)

Let ρ = 1
yTk sk

.

Bk+1 = (I − ρkysT)Bk(I − ρksyT) + ρkyky
T
k .

Clearly this matrix is symmetric when Bk is. Also, Bk+1 is positive definite.
Quiz Show that Bk+1 is positive definite.
This choice of Bk+1 has the following optimality property:

minimize ∥B − Bk∥W

subject to BT = B, Bsk = yk

whereW is a weight based on the average Hessian. (This gives a “closest” matrix view on
the solution.

4.2 BROYDEN, FLETCHER, GOLDFARB, SHANNO (BFGS) – “STANDARD”
Because we compute the search direction by solving a system with the approximate

Hessian matrix:
Bkpk = −gk ,

the BFGS update constructs an approximation of the inverse Hessian instead. Suppose that

T k “behaves like” H(x)−1 .

Then
T k+1yk = sk

is the secant condition for the inverse. This helps because nowwe can find search directions
via

pk = −T kgk ,

via a matrix-vector multiplication instead of a linear solve.
The BFGS method uses the update:

T k+1 = (I − ρksyT)T k(I − ρkysT) + ρsksTk .

By the same proof, this update is also positive definite.
This choice has the following optimality property:

minimize ∥T − T k∥W

subject to TT
= T , Tyk = sk

whereW is a weight based on the average Hessian.

4.3 SYMMETRIC RANK-1 (SR1) – FOR TRUST REGION METHODS
Both of the previous updates were rank-2 changes to Bk (or T k). The SR1 method is

a rank-1 update to Bk . Unfortunately, this update will not preserve positive definiteness.
Nonetheless, it’s frequently used in practice and is a reasonable choice for Trust Region
methods that don’t require a positive definite approximate Hessian.

Any rank-1 symmetric matrix is:
σvvT

and so the update is:
Bk+1 = Bk + σvvT .
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Applying the Secant equation constrains v, and we have:

Bk+1 = Bk +
(yk − Bksk)(yk − Bksk)T

(yk − Bksk)Tsk
or

T k+1 = T k +
(sk − T kyk)(sk − T kyk)T

(sk − T kyk)Tyk
.

The SR1 method tends to generate better approximations to the true Hessian than
the other methods. For instance, if the search directions pk are all linearly independent
for k = 1, . . . , n, and f (x) is a simple quadratic model, then Tn is the inverse of the true
Hessian.

4.4 BROYDEN CLASS
The Broyden class is a linear combination of the BFGS and the DFP method:

Bk+1 = (1 − ϕ)BBFGS
k+1 + ϕB

DFP
k+1 .

(This form requires the BFGS update for B and not T .)
There are all sorts of great properties of the Broyden class, e.g. for the right choice of

parameters, it’ll reproduce the CG method.

5 properties of quasi-newton

Quasi-Newton has all sorts of great properties. Let’s highlight a few of the theorems
from Nocedal and Wright.

5.1 QUASI -NEWTON AND THE SHERMAN-MORRISON-WOODBURY FORMULA
We can convert quasi-Newton updates from updates to the approximate Hessian Bk

to the approximate inverse Hessian T k using the Sherman-Morrison-Woodbury formula.
e.g. the BFGS update to the approximate Hessian is:

Bk+ = B −
1

sTBs
BkssTB +

1
yTs

yyT .

5.2 CONVERGENCE TO THE HESSIAN
Theorem (6.3). If f is a strongly convex quadratic,

f(x) = xTb + 1
2x

TQx,

where Q is positive definite. Then the eigenvalues of

Q1/2BkQ1/2

monotonically converge to 1 if Bk is updated using a restricted Broyden class update.

5.3 COMPUTATION OF THE HESSIAN
Theorem (6.4). If f is a strongly convex quadratic,

f(x) = xTb + 1
2x

TQx,

where Q is positive definite. If we use exact line search with an update from the Broyden
class, then after n steps, starting from B0 = I, we have that Bn = Q. (i.e. we recover the
exact Hessian!)
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