
LARGE SCALE OPTIMIZATION

David F. Gleich
April 3, 2023

Consider the unconstrained optimization problem:

minimize f (x)

where f ∶ Rn
→ R is twice continuously differentiable. These lecture notes are based on Nocedal

and Wright, Chapter 7 as well as Griva, Sofer
and Nash, Chapter 13

Throughout this entire section, we will assume that f (x) and g(x) are both easy to
evaluate. What does this mean, precisely? It means that your implementations of f (x)
and g(x) are both “fast” programs.1 In a slightly more formal sense, we assume that the 1 For instance, suppose that A is a large,

sparse matrix. Then we can compute the
matrix-vector product Ax quite easily using
sparse linear algebra. Thus, for instance, sup-
pose we want to solve a large, non-negative
least squares problem and are willing to toler-
ate a barrier approximation to the constraint:

minimize ∥Ax − b∥2 − τeT log x

then computing f and g can be done as
follows:
function nonnegls(x,A,b,tau)

y = A*x - b # efficient

f = norm(y)^2 - tau*sum(log(x))

g = 2*A’*y - tau*1.0./x

return f, g # need to double-check

function and gradient correspond to O(n) or O(n log n) computations.

1 why do we need large-scale methods?

Let’s consider the best methods we’ve studied for solving optimization problems:
Netwon’s method and the Quasi-Newton method. As a very small pseudo-code, and
without appropriate checks on the non-singularity of H, Newton’s method is:

x0 is given

while not done

Solve Hkpk = −gk.
Set xk+1 = xk + αkpk using a strong Wolfe line search

First, doing the line-search with xk as a 1,000,000 or even 5,000,000 dimensional
vector is not a problem. All we need to do for a strong-Wolfe line search is compute
inner-products with the search direction and the gradient. We have assumed the function
and gradient are easy to evaluate so this isn’t a problem.

However, this method involves solving a symmetric, positive definite linear system. We
can do this via the Cholesky factorization in approximately n3

/6 floating point operation. If
n is 100,000 or 1,000,000 –which are reasonable sizes for problems – then this computation
is impractical using a textbook Cholesky method. We’ll discuss the case of sparse Hessians,
which is a case when it is reasonable to solve this problem, below.

If f is even modestly complicated, getting Hessian information may be difficult. Thus,
let’s also consider a Quasi-Newton BFGS method.

x0 is given

T0 is a scaled identity such that T0 ≈ H(x0).
while not done

Set xk+1 = xk − αkT kgk using a strong Wolfe line search

Set T k+1 = V kT kV k + ρsksTk
where sk = xk+1 − xk, yk = gk+1 − gk

ρk = (yTk sk)
−1,

V k = (I − ρkyksTk).

In this case, the first update to the Hessian inverse T k results in a dense n × n matrix.
If n is even 500,000, this problem is almost impossible to even store!2 2 The problem is symmetric, so we’d have to

store “500,000 choose 2” double-precision
numbers, or 931 GB of data; in theory this
could be feasible.

In a nutshell, the problem with both of these methods is that the linear algebra required
does not scale. If your optimization problem is huge then you have three choices to solve it:

1. Use a simple method
2. Use scalable linear algebra
3. Change the method

We’ll discuss these in turn.

1

2 simple methods

Since the problem with the methods is that the linear algebra does not scale, let’s use
methods with simple linear algebra. We’ve seen one such methods: gradient descent.
Another method is conjugate gradients. This computes a new search direction that is
conjugate to the previous search directions.

For both of these methods, all we need to do is to compute the gradient at each step.
We have assumed that computing the gradient is easy (see above).

while not done

xk+1 = xk − αkgk
And so the only work is doing the line-search which is scalable under the assumptions

above.
For conjugate gradients, the pseudo-code of the method is:

while not done

...

βk = ∥gk∥
2
/(gk − gk−1)Tpk−1 % O(n) work

pk = −gk + βkpk−1 % O(n) work

xk+1 = xk + αkpk % line-search

Thismethod only involvesO(n)work beyond computing the line-search and gradients.
The proof of convergence for CG involves only that every n iterations, we do a step of
gradient descent as we reset the process.

The problem with both of these methods is that they only converge linearly to a solution.
Unless the problems have very special structure where this results in a small amount of
work, these methods tend to be slow.

Modern methods There has been a lot of work on other simple, scalable optimization
procedures for problems in machine learning. Almost all of these methods have linear
convergence (or worse!), yet they are widely used in practice. The rationale for this usage
is that the optimization problem is solving a problem for a particular sample of data. There
is nothing perfect about this sample of data, and hence, we don’t need to find the exact
solution. Ideally, we’d like something close to a solution that’s easy to compute. In fact, this
is a form of regularization that helps the methods avoid overfitting the data. Thus, there
are many large-scale problems where linear or even sub-linear convergence is perfectly
acceptable.

3 scalable linear algebra

The key to scalable linear algebra is to exploit structure in thematrix. In a general, n×n,
symmetric matrix, there is no structure to exploit except for symmetry. Thus, scalable
methods for these problems end up using many computers to store all the in the matrix.
The linear algebra routines are parallel codes that use hundreds of machines to do things
like compute a Cholesky factorization.3 3 I’ve used the codes in ScaLAPACK, ar-

guably the standard library, in order com-
pute all eigenvalues and vectors of a symmet-
ric 250,000-by-250,000 matrix using around
6000 processors.

3.1 SPARSITY
The most common structure in large problems is sparsity. It’s a tricky concept to define,

but the idea with sparsity is that most of the matrix is actually a zero entry. If the sparsity
isn’t too bad, then there has been an enormous amount of work on how to solve linear
systems by exploiting sparsity. The key ideas here are how to minimize the number of new
zeros introduced during a matrix factorization. Here’s a really simple example.

Let A = I + veT1 + e1vT . This matrix has the shape of an arrow:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

● ● ● ● ● ●

● ● 0 0 0 0
● 0 ● 0 0 0
● 0 0 ● 0 0
● 0 0 0 ● 0
● 0 0 0 0 ●

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where the ● denotes a non-zero entry.
We often just omit the zeros:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

● ● ● ● ● ●

● ●

● ●

● ●

● ●

● ●

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

2

If we compute the Cholesky factorization of this matrix, then we’ll get a Cholesky factor:

A = LLT where L =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

●

● ●

● ● ●

● ● ● ●

● ● ● ● ●

● ● ● ● ● ●

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

That is, we’ll have take a very sparse matrix and made it entirely dense. If, however, we
had permuted the matrix A such that: A = I + veTn + envT then we would have found:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

● ●

● ●

● ●

● ●

● ●

● ● ● ● ● ●

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with Cholesky factor L =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

●

●

●

●

●

● ● ● ● ● ●

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The goal with sparse linear algebra is to figure out how to find permutations P that keep
the Cholesky factors as sparse as possible. This procedure is very tricky and involves a
host of beautiful relationships with graph theory. Tim Davis has an incredible book about
it called “Direct Methods for Sparse Linear Systems”

For this reason, there has been a lot of work in Alex Pothen’s group here at Purdue on
how to compute sparse Hessians using automatic differentiation.

3.2 ITERATIVE METHODS & INEXACT NEWTON
Alternatively, if the problem will somehow let you compute matrix-vector product

with the Hessian efficiently, then you could use an iterative method.4 The goal would be 4 There are many problems where this is the
case, even though the Hessian itself is dense,
such as constrained least-squares problems
where the constraint is a Fourier-transform
matrix, which is dense, but has a O(n log n)
matrix-vector product through the FFT.

to solve
Hkpk = −gk

using only these matrix-vector product. As discussed in the book, if p̃k is a direction
where

∥Hp̃k + gk∥ ≤ η∥gk∥

and 0 < η < 1, then we are “okay” – see Nocedal and Wright,Theorem 7.1.

Directions of negative curvature Quick aside! On why CG can fail and how that ends
up helping us!

4 new methods: limited-memory bfgs

The goal in designing a new method is to exploit the structure of the BFGS Quasi-
Newtonmethod and generate a limitedmemory approximation of the Hessian with similar
properties. The key idea follows from the question: How could we exploit the fact that
we think our optimization method will converge fast, such as in 10 steps? If your routine
only takes 10 iterations, then it seems crazy to do all the work in updating a Hessian
approximation with O(n2

/2) matrix-elements. In total, the 10 steps would generate a
rank-20 change to the matrix, which would only take 20n matrix-elements to store. So
the idea with a limited memory BFGS method is that we’ll just store the last few changes
to the Hessian as a low-rank update.

4.1 L-BFGS
In the BFGS update, we compute:

T k+1 = (I − ρksyT)T k(I − ρkysT) + ρsksTk .

3

Let V k = (I − ρkyksTk). Then

T k+1 = V T
k T kV k + ρsksTk .

Now, consider what happens if we store vectors sk and yk for the last 10 (or so) steps.
Then we have, starting from T0:

T k = V T
k−1V

T
k−2⋯V

T
k−mT0V k−m⋯V k−2V k−1+

+ ρk−mV T
k−1⋯V

T
k−m+1sk−msTk−mV k−m+1⋯V k−1+

+ ρk−m+1V T
k−1⋯V

T
k−m+2sk−m+sTk−m+1V k−m+2⋯V k−1+

+ ⋮

+ ρk−1sk−1sk−1 .

To compute T kgk all we need to do is multiply T k by a vector. We don’t actually need the
elements itself! We can do that using the following algorithm:

q = z
for i=k − 1 to k −m
α i = ρ i sTi q % need to save these for below

q← q − α iy i
r = T0q
for i=k −m to k − 1
β = ρ iyTi r
r← r + si(α i − β)

Then we’ll have r = T kz.
So the idea with Limited Memory Quasi Newton (L-BFGS) is that we store the last T

updates to the T0 and use those to estimate T kgk . We can actually change T0 at each step,
and so a common choice is T0 = sTk−1yk−1/(yTk−1yk−1)I. This choice attempts to estimate
the norm of the Hessian along the most recent search direction.

In practice, you keep the most recent m iterates around. Usually these are stored in a
circular buffer.

4

	Why do we need large-scale methods?
	Simple methods
	Scalable linear algebra
	Sparsity
	Iterative methods inexact newton

	New methods: Limited-Memory BFGS
	L-BFGS

