Derivative Free Optimization Computational Methods in Optimization CS 520, Purdue

David F. Gleich Purdue University 2017-04-20

A demo

Derivative-free optimization (DFO) Chapter 9

Question

How would you do optimization without derivatives?

Use finite differences

 $f'(\mathbf{x}) \approx \frac{1}{\gamma}(f(\mathbf{x}+\gamma)-f(\mathbf{x}))$

Use finite differences

$$f'(x) \approx \frac{1}{\gamma}(f(x+\gamma) - f(x))$$

How to pick gamma? How much work?

Interpolate and update a quadratic model (Section 9.2)

$$m_k(\mathbf{x}_k + \mathbf{p}) = c + \mathbf{q}^T \mathbf{p} + \frac{1}{2} \mathbf{p}^T \mathbf{G} \mathbf{p}$$

 $m_k(\mathbf{y}_\ell) = f(\mathbf{y}_\ell) \quad 1 \le \ell \le \text{total parameters}$

Then use a trust-region method.

- How to find *c*, *q*, and *G*?
 O(n²) parameters
 How to choose the point set y_l?
- How to update *c*, *q*, and *G*?
 Details of interpolation methods. See the book, or references.

• How to find *c*, *q*, and *G*? O(n²) parameters

Use interpolation condition to form an n² by n² linear system

 $O(n^6)$ to solve $O(n^4)$ to update

How to choose the point set y_i ?

Fix a sequence of search directions that span Rⁿ, and cycle among them

"
$$p = " e_1, -e_1, ..., e_n, -e_n, e_1, -e_1, ..., e_n, ...$$
 $\pm e_1, ..., \pm e_n, \pm e_{n-1}, ..., \pm e_1, ...$

brutally slow in general wickedly fast when applicable (like a scalpel)

Pick a stencil around the current point

Move to the best point if "good enough" (sufficient decrease)

Otherwise, reduce gamma and revaluate

We need $\beta_{\min} \leq \mathbf{p} \leq \beta_{\max}$ $\min_{\mathbf{v} \in \mathbb{R}^n} \max_{\mathbf{p} \in \mathcal{D}_k} \frac{\mathbf{v}^T \mathbf{p}}{\|\mathbf{p}\| \|\mathbf{v}\|} \geq \delta$ This ensures we can always get at least a delta projection on any gradient. for $\mathbf{p} \in \mathcal{D}_k$ to satisfy Zoutendijk

Consider a simplex of points

A simplex consists of n+1 noncolinear points

 $f(\mathbf{x}_1) \leq f(\mathbf{x}_2) \leq \ldots \leq f(\mathbf{x}_{n+1})$

We order the vertices by decreasing function value.

Such a simplex gives us a local "linear" model of our function!

Use the "slope" of the simplex to find a good direction

 $f(\mathbf{x}_1) \leq f(\mathbf{x}_2) \leq \ldots \leq f(\mathbf{x}_{n+1})$

Use the "slope" of the simplex to find a good direction

 $f(\mathbf{x}_1) \leq f(\mathbf{x}_2) \leq \ldots \leq f(\mathbf{x}_{n+1})$

Use the "slope" of the simplex to find a good direction

 $f(\mathbf{x}_1) \leq f(\mathbf{x}_2) \leq \ldots \leq f(\mathbf{x}_{n+1})$

The line from the worst point through the centroid of the best is a reasonable search direction! Why can't we just use this direction and be done? \mathbf{X}_k

Nelder-Mead

Because we need a simplex at the next step too!

Can't be too big. Can't be too small.

Use the slope of the simplex to find a good direction.

Reflecting the *worst point* in the simplex around the centroid of what's left to find a better point

Use the slope of the simplex to find a good direction.

Reflecting the *worst point* in the simplex around the centroid of what's left to find a better point

Quiz

Why is this better than pattern-search?