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A	demo
f = x -> (x[1].^2 + x[2] - 11).^2 + 

(x[1] + x[2].^2 - 7).^2
sol = optimize(f, [0.0;0.0], NelderMead())
xs = sol.minimizer



Derivative-free	optimization	(DFO)
Chapter	9

Question

How	would	you	do	optimization	
without	derivatives?



Solution	1

Use	finite	differences

f

0(x) ⇡ 1
� (f (x + �) � f (x))



Solution	1

Use	finite	differences

f

0(x) ⇡ 1
� (f (x + �) � f (x))

How	to	pick	gamma?	
How	much	work?



Solution	2

Interpolate	and	update	a	quadratic	model
(Section	9.2)

Then	use	a	trust-region	method.

mk (xk + p) = c + q

T
p + 1

2 p

T
Gp

mk (y`) = f (y`) 1  `  total parameters



Solution	2

• How	to	find	c,	q,	and	G?
O(n2)	parameters
How	to	choose	the	point	set	yl?	

• How	to	update	c,	q,	and	G?
Details	of	interpolation	methods.	See	the	book,	or	
references.



Solution	2

• How	to	find	c,	q,	and	G?	O(n2)	parameters

Use	interpolation	condition	to	form	an	n2	by	n2	
linear	system

O(n6)	to	solve
O(n4)	to	update

How	to	choose	the	point	set	yl?	



Solution	3

Fix	a	sequence	of	search	directions	that	span	Rn,	
and	cycle	among	them

“p	=	”

brutally	slow	in	general
wickedly	fast	when	applicable

(like	a	scalpel)

e1,�e1, ... , en,�en, e1,�e1 ... , en, ...
±e1, ... ,±en,±en�1, ... ,±e1, ...



Solution	4

Pick	a	stencil	around	the	current	point

Move	to	the	best	point	if	“good	enough”	
(sufficient	decrease)

Otherwise,	reduce	gamma	and	revaluate

xk
xk

= xk + �k pk , pk 2 Dk

Example	
stencils	in	
R2



Solution	4

We	need	

to	satisfy	Zoutendijk

xk
xk

= xk + �k pk , pk 2 Dk

Example	
stencils	in	
R2

�
min

 p  �
max

min

v2Rn
max

p2Dk

vT p
kpkkvk � �

for p 2 Dk

This	ensures	we	can	always	
get	at	least	a	delta	
projection	on	any	gradient.



Solution	5	– Nelder-Mead

Consider	a	simplex	of	points

f (x1)  f (x2)  ...  f (xn+1)

xk

Such	a	simplex	gives	us	a	local	
“linear”	model	of	our	function!

A	simplex	consists	of	n+1	non-
colinear points

We	order	the	vertices	by	
decreasing	function	value.



Solution	5	– Nelder-Mead

Use	the	“slope”	of	the	simplex	to	
find	a	good	direction

f (x1)  f (x2)  ...  f (xn+1)

xk



Solution	5	– Nelder-Mead

Use	the	“slope”	of	the	simplex	to	
find	a	good	direction

f (x1)  f (x2)  ...  f (xn+1)

xk
xk

The	line	from	the	
worst	point
through	centroid

is	a	reasonable	
search	direction!



Solution	5	– Nelder-Mead

Use	the	“slope”	of	the	simplex	to	
find	a	good	direction

f (x1)  f (x2)  ...  f (xn+1)

xk
xk

The	line	from	the	
worst	point	through	
the	centroid	of	the	best

is	a	reasonable	search	
direction!



Nelder-Mead

Because	we	need	a	simplex	at	the	next	step	too!

Can’t	be	too	big.
Can’t	be	too	small.



Solution	5	– Nelder-Mead

Use	the	slope	of	the	simplex	to	
find	a	good	direction.

Reflecting	the	worst	point	in	the	simplex	around	
the	centroid	of	what’s	left	to	find	a	better	point

xn+1

x̄(�1)

x̄(�2)
x̄(�1/2)

x̄(1/2)
Or	shrink	to	
the	best	point

x1

x̄(t) =
1
n

nX

i=1

xi + t

 
xn+1 �

1
n

nX

i=1

xi

!



Solution	5	– Nelder-Mead

Use	the	slope	of	the	simplex	to	
find	a	good	direction.

Reflecting	the	worst	point	in	the	simplex	around	
the	centroid	of	what’s	left	to	find	a	better	point

xn+1

x̄(�1)

x̄(�2)
x̄(�1/2)

x̄(1/2) Or	shrink	to	
the	best	point
if	no	point	is	
better

x1

x̄(t) =
1
n

nX

i=1

xi + t

 
xn+1 �

1
n

nX

i=1

xi

!

1st

2nd?
2nd?

2nd?



Quiz

Why	is	this	better	than	pattern-search?


