# Derivative Free Optimization <br> Computational Methods in Optimization <br> CS 520, Purdue 

David F. Gleich
Purdue University
2017-04-20

## A demo

$$
\begin{aligned}
f= & x \rightarrow(x[1] . \wedge 2+x[2]-11) \cdot \wedge 2+ \\
& (x[1]+x[2] . \wedge 2-7) . \wedge 2
\end{aligned} \quad \text { sol = optimize(f, [0.0;0.0], NelderMead()) }
$$



## Derivative-free optimization (DFO)

## Chapter 9

## Question

How would you do optimization
without derivatives?

## Solution 1

## Use finite differences

$$
f^{\prime}(x) \approx \frac{1}{\gamma}(f(x+\gamma)-f(x))
$$

## Solution 1

## Use finite differences

$$
f^{\prime}(x) \approx \frac{1}{\gamma}(f(x+\gamma)-f(x))
$$

How to pick gamma?
How much work?

## Solution 2

## Interpolate and update a quadratic model

(Section 9.2)

$$
\begin{gathered}
m_{k}\left(\mathbf{x}_{k}+\mathbf{p}\right)=c+\mathbf{q}^{\top} \mathbf{p}+\frac{1}{2} \mathbf{p}^{T} \mathbf{G} \mathbf{p} \\
m_{k}\left(\mathbf{y}_{\ell}\right)=f\left(\mathbf{y}_{\ell}\right) \quad 1 \leq \ell \leq \text { total parameters }
\end{gathered}
$$

Then use a trust-region method.

## Solution 2

- How to find $c, q$, and $G$ ?
$\mathrm{O}\left(\mathrm{n}^{2}\right)$ parameters
How to choose the point set $y_{l}$ ?
- How to update $c, q$, and $G$ ?

Details of interpolation methods. See the book, or references.

## Solution 2

- How to find $c, q$, and $G$ ? $O\left(\mathrm{n}^{2}\right)$ parameters

Use interpolation condition to form an $\mathrm{n}^{2}$ by $\mathrm{n}^{2}$ linear system
$O\left(n^{6}\right)$ to solve
$\mathrm{O}\left(\mathrm{n}^{4}\right)$ to update

How to choose the point set $y_{l}$ ?

## Solution 3

Fix a sequence of search directions that span $R^{n}$, and cycle among them

$$
\begin{gathered}
" \mathrm{p}=" \mathbf{e}_{1},-\mathbf{e}_{1}, \ldots, \mathbf{e}_{n},-\mathbf{e}_{n}, \mathbf{e}_{1},-\mathbf{e}_{1} \ldots, \mathbf{e}_{n}, \ldots \\
\pm \mathbf{e}_{1}, \ldots, \pm \mathbf{e}_{n}, \pm \mathbf{e}_{n-1}, \ldots, \pm \mathbf{e}_{1}, \ldots
\end{gathered}
$$

brutally slow in general
wickedly fast when applicable
(like a scalpel)

## Solution 4

Pick a stencil around the current point

$$
=\mathbf{x}_{k}+\gamma_{k} \mathbf{p}_{k}, \mathbf{p}_{k} \in \mathcal{D}_{k}
$$

Example stencils in

$R^{2}$

Move to the best point if "good enough"
(sufficient decrease)
Otherwise, reduce gamma and revaluate

## Solution 4

$$
=\mathbf{x}_{k}+\gamma_{k} \mathbf{p}_{k}, \mathbf{p}_{k} \in \mathcal{D}_{k}
$$

Example stencils in $\mathrm{R}^{2}$

We need $\beta_{\text {min }} \leq \mathbf{p} \leq \beta_{\text {max }}$
$\min _{\mathbf{v} \in \mathbb{R}^{n}} \max _{\mathbf{p} \in \mathcal{D}_{k}} \frac{\mathbf{v}^{\top} \mathbf{p}}{\|\mathbf{p}\|\|\mathbf{v}\|} \geq \delta$
This ensures we can always get at least a delta projection on any gradient.
for $\mathbf{p} \in \mathcal{D}_{k} \quad$ to satisfy Zoutendijk

## Solution 5 - Nelder-Mead

## Consider a simplex of points

A simplex consists of $n+1$ noncolinear points
$f\left(\mathbf{x}_{1}\right) \leq f\left(\mathbf{x}_{2}\right) \leq \ldots \leq f\left(\mathbf{x}_{n+1}\right)$
We order the vertices by decreasing function value.


Such a simplex gives us a local "linear" model of our function!

## Solution 5 - Nelder-Mead

Use the "slope" of the simplex to find a good direction

$$
f\left(\mathbf{x}_{1}\right) \leq f\left(\mathbf{x}_{2}\right) \leq \ldots \leq f\left(\mathbf{x}_{n+1}\right)
$$



## Solution 5 - Nelder-Mead

## Use the "slope" of the simplex to find a good direction

$$
f\left(\mathbf{x}_{1}\right) \leq f\left(\mathbf{x}_{2}\right) \leq \ldots \leq f\left(\mathbf{x}_{n+1}\right)
$$



## Solution 5 - Nelder-Mead

## Use the "slope" of the simplex to find a good direction

$$
f\left(\mathbf{x}_{1}\right) \leq f\left(\mathbf{x}_{2}\right) \leq \ldots \leq f\left(\mathbf{x}_{n+1}\right)
$$

The line from the worst point through the centroid of the best
is a reasonable search direction!
$\mathbf{X}_{k}$

Why can't we just use this direction and be done?

## Nelder-Mead

Because we need a simplex at the next step too!

Can't be too big.
Can't be too small.

## Solution 5 - Nelder-Mead

## Use the slope of the simplex to find a good direction.

Reflecting the worst point in the simplex around the centroid of what's left to find a better point

$$
\overline{\mathbf{x}}(t)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}+t\left(\mathbf{x}_{n+1}-\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}\right)
$$



## Solution 5 - Nelder-Mead

## Use the slope of the simplex to find a good direction.

Reflecting the worst point in the simplex around the centroid of what's left to find a better point

Or shrink to
the best point
if no point is
better


$$
\overline{\mathbf{x}}(t)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}+t\left(\mathbf{x}_{n+1}-\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}\right)
$$

## Quiz

Why is this better than pattern-search?

