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The conjugate gradient method is a relative of the gradient-descent method for line
search. Like gradient descent, it’ll have linear convergence. There are tons of derivations
of the CG method from a variety of perspectives. We cover these in CS515 because they
are relevant. For optimization, these are less relevant.

The starting point to derive the method is to consider a strongly convex quadratic:

minimize 1
2x

TAx − xTb

with solution Ax = b and A = AT ,A ≻ 0.
The gradient of this function is g = Ax − b, which is what’s called the residual of the

linear system.
The CGmethod can be derived by looking for search directions which are conjugate to

the previous search direction. Through an emergent property of the algorithm (based on
conjugacy), this will result in an expanding search space that always visits a new direction.
(That is, it won’t oscillate between two directions...)

Since in an n dimensional space there are only n possible different directions, after n
steps, for a linear system of equations, the method will complete.

Our point here isn’t to look at the derivation of CG, but rather to look at the mechanics
of the algorithm for a linear system. After much simplification the algorithm is:

Input: A, b

Let

x0 = 0
r0 = Ax0 − b = −b
p0 = −r0 (Neg. gradient!)

While ∥rk∥ ≥ τ
Let αk be optimal line search in direction pk
(αk = rTk rk/pTk Apk.)

xk+1 = xk + αkpk (Update step)

rk+1 = rk + αkApk
βk+1 = rTk+1rk/rTk rk
pk = −rk + βk+1pk
k = k + 1

To recap: this does a line search (optimally) and then updates the search direction pk
based on the gradient rk . The idea with using it for optimization is that the same algorithm
will work where we replace the optimal line search with a line search algorithm (like strong
Wolfe) and the residual with the gradient.

The Fletcher-Reeves CG method uses:

rk → g(xk)
αk → Strong-Wolfe line search

The Polak-Ribière CG method uses (also):

βk = gTk+1(gk+1 − gk)/∥gk∥2

CONVERGENCE
The convergence theory for these methods is simple. Every n iterations, we set βk = 0,

which gives a gradient descent iteration. Consequently, since we never revisit things based
on line search, we are set!
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DESCENT
We need a few details to always guarantee that pk is a descent direction. Strong Wolfe

is enough for Fletcher-Reeves. For Polak-Ribière, this isn’t enough and the book discusses
additional details. Along with why you might pick one or the other.
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