### Lecture 25 - efficient and inefficient gmres
using LinearAlgebra
"""
x = gmres(A,b,iters)
"""
function gmres(A,b,k)
n = length(b)
normb = norm(b)
q = b/norm(b)
Q = zeros(n,k+1)
H = zeros(k+1,k)
Q[:,1] = q
hist = zeros(k)
x = zeros(n)
for i = 1:k
v = A*Q[:,i]
for j = 1:i
H[j,i]= v'*Q[:,j]
v = v - H[j,i]*Q[:,j]
end
# at this point, v = H(i+1,i)*Q(:,i+1)
H[i+1,i] = norm(v)
Q[:,i+1] = v/H[i+1,i]
ei = zeros(i+1)
ei[1] = normb
y = H[1:i+1,1:i]\ei
x = Q[:,1:i]*y;
hist[i] = norm(b-A*x)
if H[i+1,i] < 100*eps()
# this means we've finished the factorization early
break
end
end
return x,hist
end
n = 10
A = randn(n,n)
b = randn(n)
x1,hist1 = gmres(A,b,5)
([-0.352201745217469, 0.7081033750025103, -1.3393077353212062, -1.4790549734045693, 0.3542855813109064, -0.4687108554804207, 0.2869756722661793, -0.09066849919503164, -0.0773768290310974, -0.4103050804215759], [3.364936819267049, 2.9065236423847653, 2.755799449525736, 0.9934746477107153, 0.9100369517236918])
##
##
function planerot(x)
a,b = -x[2],x[1]
d = sqrt(b^2+a^2)
a,b = a/d,b/d
G = [b -a;a b]
y = G*x
return G,y
end
"""
An "efficient" implementation of GMRES that uses the Givens rotations
to update the solution of the least squares problem.
(Note that there are more efficiencies possible here, but this
gets at the main ideas)
"""
function gmres_efficient(A,b,tol,maxit)
n = size(b)
beta = norm(b)
Q = zeros(length(b),maxit+1)
Q[:,1] = b/norm(b)
g = zeros(maxit+1)
g[1] = beta
Js = zeros(2,maxit) # memory to store the Js
hist = zeros(maxit)
H = zeros(maxit+1,maxit)
lasti = 1
for i = 1:maxit
lasti = i
v = A*Q[:,i]
H[i+1,i] = 0 # expand k
for j = 1:i
H[j,i]= v'*Q[:,j]
v = v - H[j,i]*Q[:,j]
end
# at this point, v = H[i+1,i]*Q[:,i+1]
H[i+1,i] = norm(v)
#@show v
#@show H[i+1,i]
Q[:,i+1] = v/H[i+1,i]
# apply J1, ... Ji-1 to z
for j = 1:i-1
Jj = [Js[1,j] Js[2,j]; -Js[2,j] Js[1,j]];
H[j:j+1,i] = Jj*H[j:j+1,i];
end
# create Ji to zero out the final row
Ji,d = planerot(H[i:i+1,i])
H[i:i+1,i] = d
Js[1,i] = Ji[1,1]
Js[2,i] = Ji[1,2]
# apply Ji to g
g[i:i+1] = Ji*g[i:i+1]
hist[i] = abs(g[i+1]);
if (abs(g[i+1])/beta) < tol
break
end
end
i = lasti
# produce the solution
y = H[1:i,1:i]\g[1:i]
x = Q[:,1:i]*y;
if (norm(b-A*x)/beta) < tol
flag = 0
elseif (hist[i]/beta) < tol
flag = -1
else
flag = 1
end
hist = hist[1:lasti]
return x,hist,flag
end
x2,hist2,flag = gmres_efficient(A,b,1.0e-8,5)
@show hist1 - hist2
hist1 - hist2 = [-4.440892098500626e-16, 0.0, -4.440892098500626e-16, 0.0, 3.3306690738754696e-16]
5-element Vector{Float64}: -4.440892098500626e-16 0.0 -4.440892098500626e-16 0.0 3.3306690738754696e-16