
purdue university · cs 51500
matrix computations

H O M E WO R K
David F. Gleich

November 11, 2025

Homework 5
Please answer the following questions in complete sentences in a clearly prepared
manuscript and submit the solution by the due date on Gradescope, around Wed
November 20nd

Remember that this is a graduate class. There may be elements of the problem
statements that require you to fill in appropriate assumptions. You are also
responsible for determining what evidence to include. An answer alone is rarely
sufficient, but neither is an overly verbose description required. Use your judge-
ment to focus your discussion on the most interesting pieces. The answer to
“should I include ‘something’ in my solution?” will almost always be: Yes, if you
think it helps support your answer.

Problem 0: Homework checklist
• Please identify anyone, whether or not they are in the class, with whom

you discussed your homework. This problem is worth 1 point, but on a
multiplicative scale.

• Make sure you have included your source-code and prepared your solution
according to the most recent Piazza note on homework submissions.

Problem 1: Updating factorizations of linear systems of
equations
In class, we showed how to solve (A + uvT)x = b when given a fast factorization
method to solve Ax = b. In this problem, we will address the question of how to
update the factorization itself. Suppose that we are given a Cholesky factorization
of A = LDLT as we saw in class. Show how to update this factorization to
produce L′D′L′T = (A + uuT). Your algorithm should do no more than O(n2)
work.

Problem 2: Matrix functions in practice
In general, we don’t compute matrix functions by taking their eigenvalues and
applying a function to their eigenvalues – this is just a nice theory that works to
explain what’s going on in the simple case.

Instead, we create customized algorithms to compute a function of
a matrix. One such algorithm that computes the cosine of a ma-
trix was proposed by Serbin and Blalack and analyzed by Higham
and Smith in 2003 https://login.ezproxy.lib.purdue.edu/login?url=https:
//link.springer.com/article/10.1023/A:1026152731904

The idea is that use the cosine double angle formula:

cos(2A) = 2 cos(A)2 − I

combined with some way of estimating C0 = cos(2−mA). Then, we can compute
cos(2−m+1A) = 2C2

0 − I. Also, for cos(2−mA) then we should be able to use a
simple formula to get a good enough approximation.

1

https://login.ezproxy.lib.purdue.edu/login?url=https://link.springer.com/article/10.1023/A:1026152731904
https://login.ezproxy.lib.purdue.edu/login?url=https://link.springer.com/article/10.1023/A:1026152731904

1. Show that the double angle formula holds for symmetric matrices A.

2. In the paper, they show that if ∥A∥∞ ≤ 1, then there is a specific type
of approximation of cos(A) called a Pad'{e} approxiomation that gives an
answer down to machine precision. The specific approximation is

cos(x) ≈ r88(x) =
1 − 260735

545628 x2 + 4375409
141863280 x4 − 7696415

13108167072 x6 + 80737373
23594700729600 x8

1 + 12079
545628 x2 + 34709

141863280 x4 + 109247
65540835360 x6 + 11321

1814976979200 x8 .

When applied to a matrix with ∥A∥∞ ≤ 1, this approximation guarantees

∥ cos(A) − r88(A)∥∞

∥ cos(A)∥∞
≤ 3.26 × 10−16.

Note that this is a rational function r88(x) = p(x)/q(x) for some polynomials
p(x) and q(x). One way to evaluate this for a matrix is compute p(A) ·
q(A)−1.

Based on r88, let’s create values π and µ so that

p(x) = π0 + π2x2 + π4x4 + π6x6 + π8x8

q(x) = µ0 + µ2x2 + µ4x4 + µ6x6 + µ8x8

Then to evaluate r88(A) we have the algorithm.

A2 = A*A
A4 = A2*A2
A6 = A4 * A2
A8 = A4 * A4
P = pi0*I + pi2*A2 + pi4*A4 + pi6*A6 + pi8*A8
Q = mu0*I + mu2*A2 + mu4*A4 + mu6*A6 + mu8*A8
R = Q\P

Implement this algorithm and show that for matrices where ∥A∥∞ ≤ 1 we
have the given bound on accuracy.

You may assume that calling cos(A) in Julia is accurate.

3. Show how to determine the smallest m such that ∥2−mA∥∞ ≤ 1.

4. Implement the Serbin/Blalack/Higham/Smith procedure to compute cos(A),
i.e.

compute m such that ||2^{-m} A||_oo <= 1
compute R = r_88(2^{-m} A)
for i=1:m

R = 2*R*R - I
end
return R

For a 1000 by 1000 matrix, compare the runtime to compute cos(A) via a
spectral eigenvalue decomposition.

Problem 3: Weighted orthogonality for SVD.
One possible weighted generalization of the SVD involves producing a factorization

A = UΣV T

where UT RU = I and V T SV = I, where R and S are symmetric positive
definite matrices.

2

A common theme in solving more advanced problems is converting or translating
them into problems that we know how to solve.

Show how to use a standard SVD computation to produce this weighted SVD
factorization.

Problem 4: Implementing a rank-k solution update.
Given x and an LU factorization of A, then updating the solution of a linear
system Ax = b to a new solution (A + UV T)y = b can be done fairly efficiently.

1. Write code or fairly detailed pseudo-code to do this. This uses the Julia fac-
torization F which enables you to solve systems with A without recomputing
the factorization.

function update(x::Vector, b::Vector, F::LUFact, U::Matrix, V::Matrix)
end

(Note that the type LUFact may have changed in recent Julia releases, e.g.,
I think it is now just LU.)

2. One of the questions that frequently comes up is deciding when it is better
to refactorize compared with using the rank-k update. Try and address this
question yourself either computationally or theoretically. Specifically, the
question you should seek to answer is how performance of using the rank-k
update to (A + UV T)y = b compares to computing a new LU factorization
of (A + UV T), and then using the new LU factors to solve it. Is there a
value of k where it always makes more sense to refactorize?

Problem 5: Adding and deleting an equation
Recall that a linear system represents the simultaneously solution of a set of linear
equations

aT
1 x = b1

aT
2 x = b2

...

aT
n x = bn.

Consider a set of n equations and n unknowns with a unique solution for any
possible set of values b1, . . . , bn.

Let alg(b) be an algorithm to solve for x when given b1, . . . bn.

Show how to use alg in order to solve for y in the system of equations

cT
1 y = d1

aT
2 y = b2

...

aT
n y = bn.

That is, we deleted the equation with a1 and added a new equation with c1
instead. If you use alg too many times, you may lose points. Be efficient!

(Hint: this is essentially a special case of other problems on this homework or
other things we’ve seen in class.)

3

Problem 6: The Krylov subspace and eigenvalue algorithms
In class, we showed that the Krylov subspace:

Kk(A, b) = span(b, Ab, . . . , Akb)

arises when solving Ax = b via the simple geometric series method. Here, we
note that it also arises in the power-method to identify the largest eigenvalue of a
matrix. Note that the simple monomial basis for the Krylov subspace is:

Xk =
[
b Ab . . . Akb

]
In this case, the power-method uses the vector Xkek as the estimate of the largest
eigenvalue.

1. State an algorithm to search the Krylov subspace for the largest eigenvalue
of a symmetric matrix using the fact that the largest eigenvalue solves the
problem:

λmax =
maximize xT Ax
subject to ∥x∥ = 1.

(Note, that you are welcome to use ideas that we discuss in subsequent
lectures, but you don’t have to. Everything can be done with the material
presented through lecture 21.) Note that you may use any routine you want
on a (k + 1)-by-(k + 1) matrix.

2. Implement your algorithm and compare the eigenvalue estimates for a few
small matrices. (Hint, a good idea here would be to show convergence plots
for the error in the largest eigenvalue compared with iterations – usually on
a log-y-scale.)

3. Comment on any issues that arise in your implementation.

4

	Homework 5
	Problem 0: Homework checklist
	Problem 1: Updating factorizations of linear systems of equations
	Problem 2: Matrix functions in practice
	Problem 3: Weighted orthogonality for SVD.
	Problem 4: Implementing a rank-k solution update.
	Problem 5: Adding and deleting an equation
	Problem 6: The Krylov subspace and eigenvalue algorithms

