
purdue university · cs 51500
matrix computations

H O M E WO R K
David F. Gleich

October 28, 2025

Homework 4
Please answer the following questions in complete sentences in a clearly prepared
manuscript and submit the solution by the due date on Gradescope (Due morning
of Nov 6.)

Remember that this is a graduate class. There may be elements of the problem
statements that require you to fill in appropriate assumptions. You are also
responsible for determining what evidence to include. An answer alone is rarely
sufficient, but neither is an overly verbose description required. Use your judge-
ment to focus your discussion on the most interesting pieces. The answer to
“should I include ‘something’ in my solution?” will almost always be: Yes, if you
think it helps support your answer.

Problem 0: Homework checklist
• Please identify anyone, whether or not they are in the class, with whom

you discussed your homework. This problem is worth 1 point, but on a
multiplicative scale.

• Make sure you have included your source-code and prepared your solution
according to the most recent Piazza note on homework submissions.

Problem 1: Flop counts
1. Let E be a matrix of the form

E =
[

D u
vT α

]
where D is a diagonal matrix. Compute a flop count for computing E−1A
where E is n × n (so D is n − 1 × n − 1) and A is n × c. You may lose
points if your count is not O(nc).

2. Consider computing trace(AT B) where A and B are in compressed sparse
column format and have the same dimensions. Suppose we have access to a
fused multiply add operation. This is an operation that takes three inputs
α, γ, β and computes
θ ← α ∗ γ + β in a single operation. Explain how to use this operation
when computing the trace and compute how much such operations you need
along with any other floating point operations (additions, multiplications,
divisions, etc. )

Problem 2: Inner-products are backwards stable.
1. Find a proof that computing xT y is backwards stable. Explain this proof

in enough detail for a classmate to understand it without having read the
document. This could take up to a page to give enough detail.

2. Show that computing a matrix-vector product y = Ax is backwards stable.

1



Problem 3: Accurate summation
Consider a list of n numbers. For simplicity, assume that all numbers are positive
so you don’t have to write a lot of absolute values.

1. Show that the following algorithm is backwards stable.

function mysum(x::Vector{Float64})
s = zero(Float64)
for i=1:length(x)

s += x[i]
end
return s

end

Which requires showing that mysum(x) =
∑

x̂i where ∥x̂− x∥/∥x∥ ≤ Cnε
where ε is the unit-roundoff for Float64. (You may want to solve problem 2
first.)

2. Consider adding three positive numbers together a, b, c. Describe how to
compute s = a + b + c with the greatest accuracy.

3. Use the results of part 2 to describe a way to permute the input x to
mysum to attain the greatest accuracy. Find an input vector x where this
new ordering gives a measurable change in the floating point accuracy as
determined by the number of correct digits in the mantissa. (Hint, this
means you should know the true sum of your vector so that you can identify
it’s best floating point representation.)

4. Lookup the Kahan summation algorithm and implement it to sum a vector.
Compare the accuracy with what you found in part 3.

Problem 4: Quadratic equations
Read through the stack exchange post on solving quadratic equations. https://
math.stackexchange.com/questions/311382/solving-a-quadratic-equation-with-precision-when-using-floating-point-variables

This suggests a number of approaches to compute the roots of a quadratic equation
through closed form solutions.

An alternative approach is to use an iterative algorithm to estimate that root of
an equation. In this case, we can use a simple bisection approach, which works
quite nicely for finding the root.

Your task for this problem is to implement a bisection algorithm to return all the
solutions of ax2 + bx + c = 0 when c ̸= 0.

""" Return all the solutions to ax^2 + bx + c. It is acceptable to return
NaN instead of a root as well. """
function roots(a::Float32,b::Float32,c::Float32)
end

The input to this method is Float32 so you can compare to higher-accuracy
solutions with Float64 and to elucidate some of the issues that arise with slightly
lower-precision.

Compare the accuracy of this procedure to the methods suggested on the stack
exchange page and explain your results. Note that you may need to look for
extremal inputs. In this case, Float32 is handy because there are only 4 billion
inputs for each input value a, b, c. This is still too many to test all combinations.
But there are only two choices for the roots, which greatly reduces the space.

2

https://math.stackexchange.com/questions/311382/solving-a-quadratic-equation-with-precision-when-using-floating-point-variables
https://math.stackexchange.com/questions/311382/solving-a-quadratic-equation-with-precision-when-using-floating-point-variables


Problem 5: Condition numbers
Consider the following computations. Discuss if they are well-conditioned or
ill-conditioned. If the answer depends on the types of input, please provide some
rough guidance. (e.g. for subtraction, it’s ill-conditioned if the numbers are close
by)

1. The entropy of a probability distribution is H(p) = −
∑n

i=1 pi log pi where
0 < pi < 1. Compute the condition number of the entropy function.

2. A matrix vector product y = AT x.

3. Evaluating a neural network layer y = f(QT x) where the elements are
yi = f(wT

i x) and f the soft-plus function log(1+ex) and Q is an orthogonal
matrix

Problem 6: Experience with the SVD
Produce the analytic SVDs of the following matrices. (That is, no numerical
approximations, but feel free to let Julia give you a good guess!). It’s important
to think about these questions because I may give similar questions on a midterm
or final and you’ll be expected to remember these. It’s also handy to think about
how to construct these, even though we haven’t seen any algorithms yet. You
should be able to work them all out directly from the definition.

1.
[
0 −3
0 0

]
2.

[
−5 0
2 0

]

3.

1 −2
2 −4
0 0


4.

[
2 0
0 5

]

Problem 7: Backwards stability
1. Let f(x) =

√
x. Suppose you have an algorithm where myf(x) =

√
x + µ

where µ is the machine precision. Is myf(x) backwards stable?

2. Suppose that you have a fancy implementation of
√

x and you compute
mysqrt(0.1µ) = −1 · 10−16µ. Is this a backwards stable implementation?

Problem 8: Condition numbers
Show that

1
κ(A)

measures the relative distance from A to the space of singular matrices. That is

1
κ(A) = smallest ∥D∥

∥A∥
such that A + D is singular.

Everything here involves the matrix 2-norm.

3



Problem 9: More experience with the SVD
In this problem, we are going to compute an SVD of data derived from a
transformer-based function. Specifically, we are going to use a function un-
derlying the small gpt2 transformer. (This is an ancestor of the recently released
GPT-5).

The things you need to know about transformers is we give them an input as a
sequence of token values. The tokens are numbered between 0 and 50, 256. These
represent parts of words. The output is a matrix of low-dimensional embeddings
where each row is a d dimensional vectors (d = 768) associated with each input
token. (If you’ve seen transformers formally before, we are looking at the GPT-2
function before the final vocabulary transformation as this keeps the data more
manageable.)

As a mathematical function then, we have

f(S) : length n token sequence→ Rn×d.

Since the token sequence is one-hot encoded, that means we associate the vector
ei with token i. In which case the input is actually X = Rn×T where T = 50,257$.
(We increase by one since we are 1-indexed.)

The function is implemented in this file https://www.cs.purdue.edu/homes/
dgleich/cs515-2025/homeworks/gpt2.jl (This includes a number of other things
associated with the lecture in the textbook on Transformers that may be inde-
pendently interesting, but is not required for this problem.) The function you
want is gpt2func and you can call it like this.

include("gpt2.jl") # this will download the model if needed
gpt2func([19044, 45977, 389, 616, 2460, 290], gpt2model)

If you have an issue with the code, comment out the lines that use _add_label
function as they use characters that are utf-8 encoded and for some reason the
purdue cs server doesn’t seem to want to send it in utf8 all the time.

This will return a 6× 768 matrix from the final layer of the transformer. If you
want to play around with gpt2, there

We are going to use the SVD to compare random text and with token sequences
from Wikipedia.

In the file https://www.cs.purdue.edu/homes/dgleich/cs515-2025/homeworks/
wikitext_tokens.txt you will find 10000 random sequences of tokens from
Wikipedia of various length. You can read this input file in Julia with the
function

function read_token_sequence(file="wikitext_tokens.txt")
open(file, "r") do io

tokens = Vector{Vector{Int}}()
for line in eachline(io)

if startswith(line, "#")
continue

end
if length(strip(line)) == 0

continue
end
vals = split(line, ",")
toks = parse.(Int, vals)
push!(tokens, toks)

end

4

https://www.cs.purdue.edu/homes/dgleich/cs515-2025/homeworks/gpt2.jl
https://www.cs.purdue.edu/homes/dgleich/cs515-2025/homeworks/gpt2.jl
https://www.cs.purdue.edu/homes/dgleich/cs515-2025/homeworks/wikitext_tokens.txt
https://www.cs.purdue.edu/homes/dgleich/cs515-2025/homeworks/wikitext_tokens.txt


return tokens
end

end
tokens = read_token_sequence()

Given this result, we can get the matrix for the first token sequence like this

Y1 = gpt2func(tokens[1], gpt2model)

The idea is to to take the first 100 sequences of tokens from this file and compute
the function f(S) for each. This will give use 100 different output matrices
Y 1, . . . , Y 100. Then we vertically concatenate all the output matrices into a giant
matrix

Y =

 Y 1
...

Y 100

 .

Let stext be the singular values of Y . (Hint, I get the largest singular value is
27738.82.) I used the function svdvals in Julia for this, you need not implement
your own algorithm.

Next, we want to compare this to random token data. Suppose S is a length
n token sequence we used above. Then we want to generate a length n token
sequence where we draw token id’s randomly from 0 to 50, 256 (the code uses
zero based indices to make it easier to compare with Python).

If we generate a random sequence R to match the length of the first 100 sequences
above, and then compute that function, we get 100 different output matrices
Z1, . . . , Z100 of exactly the same sizes. We assemble these into a giant matrix Z
as before and then compute their singular values to get srandom.

1. What do you notice when you compare stext to srandom?

2. Suppose we did this SVD computation for all 10,000 sequences, what
computational challenges do we encounter? Can you overcome them? (You
do not have to overcome them for full points, but this is feasible to do using
what we have learned in class.)

3. The actual output from the transformer is usually a sequence of logits that
can be rounded back to tokens. What this means is that we take the output
Y that we get and multiply it by a 768× 50, 257 dimensional matrix ET .
This is known as the token decoding. Give an procedure to compute the
SVD of Y ET without actually computing the matrix A = Y ET assuming
that Y and E are full-rank. (Hint: use one or more QR factorizations.)
You are only allowed to do an SVD of a matrix with 768 columns.

5


	Homework 4
	Problem 0: Homework checklist
	Problem 1: Flop counts
	Problem 2: Inner-products are backwards stable.
	Problem 3: Accurate summation
	Problem 4: Quadratic equations
	Problem 5: Condition numbers
	Problem 6: Experience with the SVD
	Problem 7: Backwards stability
	Problem 8: Condition numbers
	Problem 9: More experience with the SVD


