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Numerical linear algebra

Or

Matrix computations



Purpose

Matrix computations underlie much (most?) of 
applied computations.  

It’s the language of computational algorithms.



PageRank (from the paper)
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3. The Generalized Method
In this method (Broyden, 1967) the vector p, is given by

P, = -H,f(> (3.1)
where H, is positive definite. Hi is chosen to be an arbitrary positive definite matrix
(often the unit matrix) and H,+i is given by

H / + 1 = Ht-Hgrf+Wfif, i = 1,2,..., (3.2a)
where

y; = f1+,-f(, (3.2b)
q[ = a i P i

r - ^ r H ( > (3.2c)
(3.2d)
(3.2e)
(3.20

The parameter /?, is arbitrary and setting it equal to zero gives the DFP method
(Fletcher & Powell, 1963). It was shown by Broyden (1967) that the matrices H,
constructed in this way are always positive definite if /?, > 0.

In order to analyse the convergence of this algorithm we define three more quantities.
Let B be the positive definite matrix that satisfies the equation

B2 = A, (3.3)
and define z,, K, by

i, = Be,, (3.4)
and

K, = BH,B. (3.5)
These definitions coupled with equations (2.12) and (3.2) then yield, after some

tedious and uninstructive algebra involving relationships established in Section 2
(above),

|ZJ+I = Z|-K,z,f,, (3.6)

K,+, = X]-K?z,tj<ytfKf+PpjKd+*&!«<* JtfcjK, - prfXf), (3.7)
and

f, = zjK^xjKfz,. (3.8)
It follows immediately from the last three equations and equations (3.2e, f) that

z,T+1K,z, = 0, (3.9)
and

Kl+1Kfl, = Kto. (3.10)
The last two equations are the key equations to this part of the analysis, the proof

of n-step convergence of the process relying heavily upon them.
THEOREM 1. The generalized algorithm exhibits n-step convergence.
Proof. The proof is inductive.

Assume that
f = 0, 1 < j < i - 1 , (3.11a)
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with 

where 

2a 
N 

a=--- 

I 1, N even 

2, N odd. 
E N  = 

and [ N / P ]  is t.he largest integer not exceeding N I P ,  
(N,P integers). All submatrices appearing in equat,ions 
(6) and (7) a.re  symmet,ric, as is Y ,  so that Yi = 
(i = 1,2, - .,X - 1 )  ‘and only [ N / 2 ]  + 1 of the sub- 
matrices Y i  need be computed. The closely related case 
of a circular array having an additional dipole at its 
center may be considered by simila.r  methods to those 
used in the preceding [7, sect. 3.51. 

B.  Port Description of Array 
Since relatively few  of the elements of V are nonzero 

some reduction in (3) is possible.  Only those columns of 
Y which  correspond to indices of triangles centered at. the 
dipole  mid-point,s  need be retained in ( 3 )  ; denote as YR 
the rectangular matzix obtained by delet.ing all columns 
of Y not having such a column index. Then, 

I = YRVT (8 1 
where VT is the N vector formed by deleting all ident.ically 
zero  elements of V .   Y R  is denoted t,he “reduced admittance 
matrix.” 

Furthermore, if only the feed-point. currents a.re of 
interest, a similar reduction may be performed  on rows 
of YR and I to yield, 

IT = YTVT (9 1 
where IT,YT,VT are, respectively, the port  (terminal) cur- 
rent vector, admittance matrix, and voltage vector which 
describe the  array as an N-port network for  feed  con- 
siderations. 

111. PATTERN SYNTHESIS 
It has been shorn [ 9 ]  that for an  array of parallel 

x-directed filamentary currents the far-field radiation pat- 
tern on a surface of constant 0 may be considered as arising 
from a pla.nm array of isotropic  uncoupled point sources 
whose excitations are given by a linear transformat,ion of 
the filamentary current, excitations. An array of thin 

parallel wires  may be considered as an  army of iilamentmy 
currents for  far-field  purposes if the wire diameters are 
small compared to a wavelength at  the frequency of  ex- 
citation. In  the following, the “surface of constant fP is 
taken  as the principal H plane (0 = ~ / 2 )  without serious 
loss of generality. 

The result of [9]  as it applies to  the principal H-plane 
field  for the circular array of Fig. 1 may be  stated, 

hr 
ee = Wn exp [ jkR COS (4 - na)]  (10) 

where e8 is the normalized 0 component of the far electric 
field, W ,  is the transformed excitat-ion to be discussed, 
and 12 = with X the wavelength at  the exciting fre- 
quency. This expression is of the same form as for the 
far field in t.he zy plane of an  array of uncoupled  isotxopic 
point sources of strength W ,  at the points (p,+,z) = 
(R,ncu,O) (n = 1,2, . - , N ) .  It should be noted that this 
reduction to a point,-source  problem depends for its suc- 
cess  on the a.zimut.ha1 omnidirectionality of the radiating 
sources  (hence the restriction t.0 parallel wires) and is not 
simply a rest,at.ement of t,he principle of patttern mult.ipli- 
cation; the present t,reatment. takes full account of all 
mut.ua1  coupling effects. 

The vector W = [ l V ~ , W ~ , -  - . , W N }  is generated by a 
transformat.ion of the terminal excitation [9] 

n=l 

IF‘ = AVT = AYTIT (11 1 
where A is a circulant matrix having elements Aij = ali-jl, 
such that,  in terms of the elements yij of the reduced 
admittance matrix YR, 

bf ‘-1 
an-l 2 yin + yMiln, n = 1,2,.--,X. (12)  

i=l 

Thus the circuit description of the  array serves as the 
connecting link betweea t,he physical voltage or current 
excitat,ions of the  array and the point.-source  model. In 
t.he following, attention  is confined to  principal H-plane 
pattern synthesis for circular axrays of point-sources; 
(1  1 ) and (12) can then be used  t.o  rea.lize  t.he synthesized 
pattern with physical  dipole  elements. 

In order to achieve some depth of treatment of t.he  more 
common pathern synthesis requirements, t,he following 
restrictions are imposed. 

1) Patterns  are symmet.rica1  about. 4 = 0. 
2) Patterns  are purely real (or constant phase). 
3 )  The number of dipoles is even. 

It can be shown [7, sect.. 5.61 that, subject to these 
rest,rictions, Wn = v’hr-n = Tvhr/2-n*, so that.  there  are 
only N/2 + 1 independent real va.riab1es.I (Real and 
imaginary parts of WO,WI, - - , W [ N / ~ ] ,  nit,h w [ N / 4 ]  purely 
real if [ N / 4 ]  = X/4.) 

The  pattern synthesis problem mag be considered as a 
problem of approximation. Let, F ( 4 )  be a pattern which 

1 Complex conjugation is denoted by the asterisk. 

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on November 13, 2009 at 12:27 from IEEE Xplore.  Restrictions apply. 
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Electrical circuits

“A matrix version of Kirchhoff’s circuit law is the 
basis of most circuit simulation software”
-- Wikipedia 



Other applications

Biology
PDEs/Mechanical Engineering/AeroAstro
Machine learning
Statistics
Graphics



Purpose

The purpose this class is to teach you how to 
“speak matrix computations like a native” so 
that you can understand, implement, interpret, 
and extend work that uses them.



Examples

Why should we avoid the “normal equations”?

Why do I get strange looks if I talk about the SVD 
of a symmetric positive definite matrix?

Why not write things element-wise?



Please pay attention for a 
second, this next bit is 
important!



The new class schedule
Basic Problems
• Least Squares, Linear Systems, 

Singular Values, Eigenvalues, 
Sparse Matrices, 

Simple Algorithms
• Gradient descent, power 

method 
• Convergence analysis
Finite Termination
• Coordinate fixing -> Cholesky
• LU with pivoting
• QR factorization

Conditioning & Stability (after 
midterm)
• How to choose algorithms? 
Advanced Problems
• Sequences of linear systems
• Generalized eigenvalue 

problems
Krylov Methods
• Arnoldi, Lanczos
Eigenvalue algorithms
• All eigenvalues
• Some eigenvalues
Getting high performance, 
randomized? 



Why did I change this? 

• One weakness of a classic presentation is that 
it discourages interplay between pre/post 
midterm.

• The new presentation makes the class more 
exciting and highlights the interplay between 
materials. 

• One downside, it doesn’t really follow an 
existing book. 



Textbooks

No best reference.

Golub and van Loan – “The Bible” – but 
sometimes a bit terse

Trefethen & Bau, Numerical Linear Algebra
Demmel, Applied Numerical Linear Algebra
Saad, Iterative Methods for Sparse Linear Systems



Background books

Strang, Linear Algebra and its Applications
Meyer, Matrix Analysis



Why I like Julia & Matlab

Julia Designed as a technical computing language
Matlab it’s a modeling language for matrix methods!

The power method described in Wikipedia

while 1
a = b; 
b = A*b;
b = b/norm(b);
if test_converge(a,b); break; end

end

Matlab & Julia code

x = b # make a reference to A
y = zeros(length(b)) # allocate
while 1

A_mul_B!(y,A,x)     # y = Ax
scale!(y,1/norm(x)) # scale
if test_converge(x,y); break; end
x,y == y,x # swap pointers

end

Super efficient Julia code



Software
You will have to write matrix programs in class.

Julia & Atom my recommendation (what I use!)
Julia & Jupyter notebook my 2nd recommendation
Julia & Text Editor (your call!) 

Matlab what I used to use
SciPy, NumPy okay (look at spyder/pythonxy)

R not recommended, best to avoid
Scilab you’re on your own
C/C++ with LAPACK okay, but ill-advised
Fortran (same!)



THE SYLLABUS



Cut to website!
www.cs.purdue.edu/homes/dgleich/cs515-2020



Quiz

• Write down any questions, concerns, issues, 
etc. you think you have after hearing about 
the class logistics.


