
�ese notes were written during the Fall 2020
semester of theCOVID-19 pandemic. So called
“armchair epidemiologists” were everywhere
and the time called for everyone to be able
to understand spread and policy and a host
of complex issues. �ese notes should not be
used for “armchair epidemiology” but rather
to understand how the tools from this class
might manifest in such a scenario.
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1 a simple viral model.
We are going to consider a simple model of a viral spreading process where each

person1 1 In standard mathematical epidemiology lit-
erature, this would be a susceptible, infected
(SI) model. �is is highly simplistic!· can be infected

· is infected.

We are also going to consider “time” where “time” represents some regular period such as
a day or week. We also assume that each person’s spreadable contacts are the same over
that time period; a contact is spreadable if you see them long enough to possibly spread a
virus to them. Put another way, “time” is long enough so that we see the same group of
people over that period. So this isn’t the group of everyone you see, but everyone you see
long enough to possibly exchange viral material with!

�e contacts among our people de�ne a network or graph. Each node is a person. �e
edges of the network represent the spreadable contacts. Here’s an example.

FIGURE 1 – A small contact network with the adjacency matrix for the network.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0 1 1
0 0 1 1 0 0 0 1 0 0
0 1 0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 1 0
1 0 1 0 0 0 0 1 1 1
0 0 0 0 1 0 0 1 1 0
0 1 0 1 1 1 1 0 0 0
1 0 0 0 1 1 1 0 0 1
1 0 0 0 0 1 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note here that the non-zero entries in the adjacency matrix correspond to edges. So
A(1, 10) and A(10, 1) are both one because person 1 and person 10 are contacts. Now,
at the moment, it’s premature to call A a matrix. Right now, it’s just a table of data that
collects information on edges. But, we’ll soon see the termmatrix is appropriate.

Back to the virus and how it spreads. We further assume a contact will cause an
infection with probability 0 < ρ < 1.2 2 If you see someone more o�en that you

want to increase this probability for some
contacts, the model we have would allow
you do to this! Seems like a good homework
problem to �gure out where!

2 a first model that isn ’t quite right, but is a
useful start.

�e probability that a person i is infected at time t + 1 is the probability that i got the
infection from a contact at time t. �is corresponds with the following probability scenario.
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Each contact j in the neighbors of i infects i based on a simple random trial that occurs
with probability ρP( j is infected at time t). �is is a simple exercise in probability.3 What 3 See https://www.khanacademy.org/

math/ap-statistics/probability-ap/

probability-multiplication-rule/a/

probabilities-involving-at-least-one-success.

that reference explains is that it is easiest to look at the probability that i is not infected.
Which corresponds with all of the “infection attempts” failing. We assume these are
independent, so the failure to be infected is just the probability

∏
j∈neighbors(i)

(1 − P( j is infected at time t)).

�is makes sense. If any neighbor is infected with probability 1 and p = 1, then you
will be infected, so this quantity will be 0 (so there no chance you are not infected.) �e
probability that i is infected is simply the complement:

P(i is infected at time t + 1) = 1 − ∏
j∈neighbors(i)

(1 − P( j is infected at time t)).

We then evaluate this for all i.
�is describes a very simple evolution in terms of the adjacency matrix A that is easiest

to explain in terms of code. Let x be the vector P(i is infected at time t) for all i and y be
the vector P(i is infected at time t + 1) for all i. �en

1 function evolve(x::Vector, p::Real, A::AbstractMatrix)

2 log_not_infected = log.(1 .- p.*x)

3 y = 1 .- exp.(A*log_not_infected)

4 y = max.(y, x)

5 end

Here, we are using the product is the exponentiated sum of logs. Consequently, we can
simultaneously evaluate all of the probabilities by taking the log and then summing using
the adjacency matrix. �is is because

[Ax]i = ∑
j∈neighbors(i)

x j .

�e �nal max is useful if you have a boundary condition with a set of de�nitely infected
nodes, but this could also be omitted.4 4 Play around with it and see. It is a model,

not a commandment! �e idea is to modify
it and understand what happens.

AN INTERESTING ASIDE.
When I ran this, initially, I thought this would converge to all probabilities of 1. �is does
not happen. Instead it converges to a steady state I can’t quite explain. A steady state
corresponds with

log(1 − P(i)) = ∑
j∈neighbors(i)

log(1 − pP( j)).

It is totally unclear to me why and how this iteration ought to converge and why this �xed
point ought to exist. But it does—reliably so!

AN APPROXIMATION
But here is where linear algebra comes into play. Suppose we make the reasonable ap-
proximation that ρP( j is infected at time t) is small. �is means the chance of getting this
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from an arbitrary interaction is small. �is is plausible at the start of an infection. �en
that our expression looks like

(1 − a) ⋅ (1 − b) ⋅ (1 − c)⋯.

If a, b, c are fairly small, then products ab are even smaller, so we could use the approxi-
mation:

(1 − a) ⋅ (1 − b) ⋅ (1 − c) ≈ 1 − a − b − c.
Applied to our expression, this gives: �en note that

∏
j∈neighbors(i)

(1 − P( j is infected at time t)) ≈ 1 − ∑
j∈neighbors(i)

P( j is infected at time t)

�is suggests an even simpler iteration.
1 function evolve_approx(x::Vector, p::Real, A::AbstractMatrix)

2 y = p.*(A*x)

3 end

�is is just a repeated matrix vector product! If x(t) is the set of probabilities from this
approximation at the tth step, then

x(t+1) = ρAx(t) = (ρA)t+1x(0)

where x(0) is the start of everything.

3 fixing the problem

But there is a problem in the above formulation. �is was hinted at in the interesting aside.
If you get the infection with probability ρ, then over enough time, everyone would become
infected. �e probabilities in either model above, though, do not go to 1. �is is because
we forgot a piece: you infect yourself based on the probability in the prior iteration.

�e adjustment is simple

P(i is infected at time t + 1)
= (1 − ∏

j∈neighbors(i)
(1 − P( j is infected at time t)))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
infected via neighbors

(1 − P(i is infected at time t))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
actually infected in the previous step.)

and
1 function evolve_with_self(x::Vector, p::Real, A::AbstractMatrix)

2 log_not_infected = log.(1 .- p.*x)

3 y = (1 .- exp.(A*log_not_infected).*(1 .- x))

4 y = max.(y, x)

5 end

In this new model, the probabilities always go to one.5 5 �is is not a complicated argument, but it
isn’t the focus on this class.

THE APPROXIMATION AGAIN
Let’s use that same idea and approximation to understand what will happen when the
probabilities are small. Applying this to the adjusted formulation

P(i is infected at time t + 1) ≈ ρ ∑
j∈neighbors(i)

P( j is infected at time t)+P(i is infected at time t).

1 function evolve_with_self_approx(x::Vector, p::Real, A::AbstractMatrix)

2 y = rho*(A*x) + x

3 end

�is is also just repeated matrix vector products, but with the matrix ρA+ I instead of ρA.
As in, if again x(t) is the set of probabilities from this approximation at the tth step, then

x(t+1) = (ρA+ I)x(t) = (ρA+ I)t+1x(0)

where x(0) is the start of everything.

3



4 the eigenanalysis

As we will see in this class, the eigenvectors of A determine the behavior of both powers of
ρA and (ρA+ I) as the powers get large. �is information then suggests how epidemics
spread on networks and a variety of other related behaviors.

5 a slightly different model

�ese models are not commandments. �ey encode slightly di�erent and related ideas.
Here’s another way to understand this. What we are doing in the �rst (incorrect) model
is evaluating the probability that node i is infected by neighbors at time t. Let n(t)i =
P(i is infected via neighbors at time t). �en we have

n(t+1)i = 1 − ∏
j∈neighbors(i)

(1 − ρn(t)j ) ≈ ρ ∑
j∈neighbors(i)

n(t)j .

As a matrix-vector iteration, the approximation is

n(t+1) = ρAn(t) = (ρA)t+1n(0) .

But what is n(0), the starting condition? �is has to do with what is o�en called a boundary
condition. If we are in a scenario like the US, where the virus is everywhere then we can
reasonably set n(0) to be a small constant to model the scenario where everyone has some
small chance of being infected. Alternatively, if we are in a contact tracing scenario or a
test and trace scenario like Purdue is trying to do, we would remove the contacts from
the network that we know are infected and look at the probability that. Here, we simply
take any nodes we know are infected, remove them from the network, but evaluate the
probability that they infect their neighbors. For simplicity, suppose there is one node z
infected. �en we set n(0)j = ρ if j is a neighbor of z and 0 otherwise. �e matrix A for
this second scenario does not include z.

Now, this models transmission, but we know to know infection probabilities. �ese
are just given by

P(i is infected by time t) = 1 −∏(1 − n(t)i ) ≈
t

∑
ℓ=0

n(t)i .

Let x(t) be the probability that i is infected by time t above for all nodes. �en we have

x(t) ≈
t

∑
ℓ=0

n(t) ≈
t

∑
ℓ=0

(ρA)ℓn(0) .

�is last expression is known as a Neumann series, and admits a closed form solution
when ρ is su�ciently small.6 If ρ is small enough then 6 Later in class, we’ll see that ρ has to be

smaller than the largest magnitude eigen-
value of A.∞

∑
ℓ=0

(ρA)ℓn(0) = (I − ρA)−1x(0) .

Put another way, your chance of ever being infected via neighbors from a starting set of
probabilities is given by the the solution of a linear system of equations whose right hand
side is the initial set of probabilities:

(I − ρA)x(∞) = n(0) .

�is is something known as Katz centrality [Katz, 1953] that was derived to understand
social structure. but again shows how simple matrix systems arise in a problem that is
relevant to the times!
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