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The entire goal of our class was to help study matrix problems through their structure.
Here we will consider matrices that have what we will call “bipartite” structure, following
the conventions of a graph theory view on matrices. A more standard name for this
structure is “consistently ordered” but that includes quite a few more details.

Where do bipartite matrices arise? The first place is in algorithms for the SVD. Another
place is the 2d Laplacian, or any matrix derived from a bipartite graph. The point of this
lecture is to look at the relationships between these persepctives.

0.1 ALGORITHMS FOR THE SVD
We have seen algorithms to compute eigenvalues of matrices. Algorithms for the SVD

follow from two points of view. Assume without loss of generality that A has more rows
than columns.

View 1. The singular values of the matrix A are the eigenvalues of ATA
View 2. The singular values of the matrix A are the positive eigenvalues of B =

[
0 A
AT 0].

The matrix B in view 2 is a specific instance of a bipartite matrix!
More generally, the theorem underlying View 2 is

THEOREM 1 Let B = [ 0 A
AT 0] and let A = UΣV T be the SVD of A. Then the eigenvalues

of B are ±σi along with m + n − 2n additional zeros. Given an eigenvalue +σi eigenvector

Bz = σz if we partition z = [xy]. Then, Ay = σx is one of the singular vectors and value sets.

Proof We have B = [ 0 UΣV T

VΣTU T 0
] = [

U 0
0 V] [

0 Σ
ΣT 0] [

U 0
0 V]. — TODO –

Show more of this matrix, including the number of zeros. Then note that there exists a
permutation matrix P such that

P [
0 Σ
ΣT 0]P

T
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—TODO –Work out more of this matrix, including the number of zeros.
Further, we have

[
0 σi
σi 0 ] = [

−1/
√

2 1/
√

2
1/
√

2 1/
√

2
] [
+σi

−σi
] [
−1/
√

2 1/
√

2
1/
√

2 1/
√

2
] .

At which point, we are done. ∎

This enables us to work with the matrix B instead of A. Of course, we do not actually
form B, rather we work with it implicitly.

Just like eigenvalue algorithms, the first step is to reduce the matrix size via a set of
orthogonal operations. For the SVD, we can make this two-sided! This enables us to
reduce A to a bidiagonal matrix F .
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— TODO – New nodes on doing the bidiagonal reduction via a full Householder step
on the left, then a partial on the right, and then full on the left. . . .

— TODO – Note that we could do lower-bidiagonal too!
We can also see this via the Lanczos perspective. Consider running the Lanczos

method on B.

EXAMPLE 2 A =

-5.0 -5.0 5.0 -3.0

-3.0 -2.0 -1.0 1.0

4.0 3.0 0.0 -4.0

0.0 2.0 -4.0 3.0

-5.0 0.0 -3.0 -1.0

5.0 2.0 2.0 -2.0

U,T,rho = lanczos(A, [ones(6); zeros(4)], 4)

U =

10 x 5 Array{Float64,2}:

0.408248 0.0 0.558726 0.0 0.446931

0.408248 0.0 -0.0423861 0.0 0.410261

0.408248 0.0 -0.0192664 0.0 -0.687834

0.408248 0.0 -0.5279 0.0 0.214123

0.408248 0.0 0.466248 0.0 -0.332179

0.408248 0.0 -0.435421 0.0 -0.0513024

0.0 -0.549442 0.0 -0.540403 0.0

0.0 0.0 0.0 -0.636057 0.0

0.0 -0.137361 0.0 0.47354 0.0

0.0 -0.824163 0.0 0.281345 0.0

T =

0.0 2.97209

2.97209 0.0 5.94127

5.94127 0.0 7.37874

7.37874 0.0

There is a large amount of structure that emerges! Let’s decode this structure!
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