One of the goals of matrix computations is to exploit structure inside the problem. That is, there are algorithms that will work for essentially any matrix that is a valid input for the problem. But you are unlikely to have any matrix! You have a matrix that arises in your application. The idea is that we should be able to take advantage of that structure in order to write better algorithms!

1 A FIRST EXAMPLE OF STRUCTURE

Consider those least-squares problems we had from the last lecture. The matrix

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
\vdots & & \\
1 & x_{N} & x_{N}^{2}
\end{array}\right]
$$

One way to solve a least-squares problem (which we will derive eventually, see a future lecture!) is to convert it into a set of linear equations called the normal equations.

Recap of the normal equations approach for least-squares ${ }^{1}$ To find \mathbf{x} such that $\| \mathbf{b}$ $A \mathbf{x} \|_{2}^{2}$ is minimized, we can solve the normal equations

$$
\boldsymbol{A}^{T} \boldsymbol{A} \mathbf{x}=\boldsymbol{A}^{T} \mathbf{b}
$$

Let's look at the matrix $\boldsymbol{A}^{T} \boldsymbol{A}$ defined in the least squares problem with above:

$$
\boldsymbol{A}^{T} \boldsymbol{A}=\left[\begin{array}{ccc}
N & \sum_{i} x_{i} & \sum_{i} x_{i}^{2} \\
\sum_{i} x_{i} & \sum_{i} x_{i}^{2} & \sum_{i} x_{i}^{3} \\
\sum_{i} x_{i}^{2} & \sum_{i} x_{i}^{3} & \sum_{i} x_{i}^{4}
\end{array}\right] .
$$

Again, this is a very specific type of matrix. Notice that the values are constant in certain regions:

$$
\boldsymbol{A}^{T} \boldsymbol{A}=\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{2} & y_{3} & y_{4} \\
y_{3} & y_{4} & y_{5}
\end{array}\right] .
$$

So if you are interested in solving these types of equations, you do not need a general purpose means of solving a linear system of equations. What you need is just an algorithm to solve these specific types of inputs.

This type of input arises frequently, and so it has acquired a name. The general form is called a Hankel matrix. ${ }^{2}$

DEFINITION 1 A matrix is a Hankel matrix if $A_{i, j}=A_{i-1, j+1}$ whenever $i-1, j+1$ is a valid index into the matrix.

The following are straightforward results of this definition.

THEOREM 2

- A square Hankel matrix is symmetric.
- An $m \times n$ Hankel matrix is defined by $m+n-1$ numbers.

Thus, as an example, we could work out how to solve linear equations with Hankel matrices and show how to use that to fit 1 dimensional curves. This would hopefully make it better for this single purpose.

Lecture 3 - Learning objectives.
How to understand structure in matrices and where it comes from.
What a Hankel matrix is.
What a sparse matrix is.
${ }^{1}$ See the future lectures on why there are usually better ways to solve these problems.
${ }^{2}$ Who was Hankel? Is he really the first to look at these? Short answer: I don't know. Wikipedia has a little bit of information, https://en.wikipedia.org/wiki/Hermann_ Hankel, so does the Encyclopedia of Mathematics, https://www.encyclopediaofmath. org/index.php/Hankel_matrix, but neither gets at the question of who was the first to specialize on these types of matrices.

2 SPARSE STRUCTURE IN MATRICES

The next type of structure we'll discuss is sparse structure or simply put sparsity. Simply put, a sparse matrix consists of mostly zeros. Conversely, a dense matrix is a matrix that is not sparse.

Matrices with mostly zeros arise often when we are studying real-world systems. There are a large number of examples of this at the SuiteSparse Matrix Collection (https: //sparse.tamu.edu/) which has a database of tens of thousands of examples of these real-world system and the matrices that result.

We'll see a few examples as we go along through our lectures. Let's get started with a simple one that comes up for a problem that has all the of the actual interesting detail removed.

EXAMPLE 3 Consider the following problem. Suppose you are sitting on the number line at 0 , and you move left and right with equal probability $(1 / 2)$ at each step. What is the expected length of time until you first hit the integer +6 or $-4 .^{3}$

We can solve this by letting $x_{\{i\}}$ be the expected length of time before you first hit either integer given that you start at state $\{i\}$. Note that i can range from -4 to +6 . Also note that $x_{\{-4\}}=x_{\{+6\}}=0$. Let's work out the others. Suppose we were to start at state $\{-3\}$. Then we have at least one move that results in two cases: we move to $\{-4\}$ with probability $1 / 2$ and stop, or we move to $\{-2\}$ with probability $1 / 2$ and continue. Consequently:

$$
x_{\{-3\}}=1+\frac{1}{2} x_{\{-4\}}+\frac{1}{2} x_{\{-2\}} .
$$

Likewise, we can apply the same analysis to get:

$$
\begin{gathered}
x_{\{-2\}}=1+\frac{1}{2} x_{\{-3\}}+\frac{1}{2} x_{\{-1\}} \\
x_{\{-1\}}=1+\frac{1}{2} x_{\{-2\}}+\frac{1}{2} x_{\{0\}} \\
\vdots \\
x_{\{+5\}}=1+\frac{1}{2} x_{\{+4\}}+\frac{1}{2} x_{\{+6\}} .
\end{gathered}
$$

This gives us an overall linear system of equations:

$$
\left[\begin{array}{ccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{\{-4\}} \\
x_{\{-3\}} \\
x_{\{-2\}} \\
x_{\{-1\}} \\
x_{\{0\}} \\
x_{\{+1\}} \\
x_{\{+2\}} \\
x_{\{+3\}} \\
x_{\{+4\}} \\
x_{\{+5\}} \\
x_{\{+6\}}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
0
\end{array}\right] .
$$

Note that most of the elements are zero.
EXAMPLE 4 Consider the following revised setting. Suppose you are sitting on the number line at o, and you move right with probability p and stay put with probability q. With probability r, you restart at 0 at any value between 0 and your current position-1, with the restart chosen uniformly at random. What is the expected time until you hit +10 ? We also have $p+q+r=1$. If $p=1 / 2, q=1 / 4, r=1 / 4$, how long do we expect to take to reach +10 ?

[^0]Again, this can be solved by a similar linear system. First, we have $x_{\{0\}}=1+(1-$ p) $x_{\{0\}}+p x_{\{+1\}}$. The other equations all proceed in a similar fashion.
$\left[\begin{array}{ccccccccccc}p & -p & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -r & (1-q) & -p & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{2} r & -\frac{1}{2} r & (1-q) & -p & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{3} r & -\frac{1}{3} r & -\frac{1}{3} r & (1-q) & -p & 0 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{4} r & -\frac{1}{4} r & -\frac{1}{4} r & -\frac{1}{4} r & (1-q) & -p & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{5} r & (1-q) & -p & 0 & 0 & 0 & 0 \\ -\frac{1}{6} r & (1-q) & -p & 0 & 0 & 0 \\ -\frac{1}{7} r & (1-q) & -p & 0 & 0 \\ -\frac{1}{8} r & (1-q) & -p & 0 \\ -\frac{1}{9} r & (1-q) & -p \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x_{\{0\}} \\ x_{\{+1\}} \\ x_{\{+2\}} \\ x_{\{+3\}} \\ x_{\{+4\}} \\ x_{\{+5\}} \\ x_{\{+6\}} \\ x_{\{+7\}} \\ x_{\{+8\}} \\ x_{\{+9\}} \\ x_{\{+10\}}\end{array}\right]=\left[\begin{array}{c}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0\end{array}\right]$.

A system of equations closely related to this arose when were were studying the ability of algorithms to make progress when there are failures. In this case, p is the probability of progress on a given step and q and r model two different failure scenarios that take us back to previous levels of progress.

- TODO - Aside on Candyland Markov chain.
- TODO - Aside on PageRank linear system.
- TODO - Forward reference to creating a problem on a grid.

3 SYMMETRIC POSITIVE DEFINITE MATRICES

When we solved the least squares problem via the normal equations, the matrix $\boldsymbol{A}^{T} \boldsymbol{A}$ came up. It turns out that matrices with this form are extremely important and so they are called symmetric positive semi-definite matrices. More explicitly, a symmetric positive definite matrix is one that can be written:

$$
\boldsymbol{B}=\boldsymbol{F}^{T} \boldsymbol{F}
$$

for some matrix \boldsymbol{F}. Note that \boldsymbol{F} need not be unique. Another way of characterizing symmeric positive semi-definite matrices is:

$$
\mathbf{x}^{T} \boldsymbol{A} \mathbf{x} \geq 0 \text { for all } \mathbf{x}
$$

DEfinition 5 A matrix \boldsymbol{A} is symmetric positive definite if

$$
\mathbf{x}^{T} A \mathbf{x}>0 \text { for all } \mathbf{x} \neq 0
$$

4 FAST OPERATORS AND DATA-SPARSE MATRICES

- TODO - Fill in this section or move until later.

5 M-MATRICES

An M-matrix is a square matrix where the inverse is non-negative. ${ }^{4}$
DEFINITION 6 Let \boldsymbol{A} be a square matrix, then \boldsymbol{A} is an M-matrix if \boldsymbol{A}^{-1} is elementwise nonnegative.

The class of M-matrices arises frequently when dealing with Markov chains (although that is not why it is called an M-matrix).

- TODO - More on where M-matrices come from.
${ }^{4}$ There are a few variations on these classes, so this may not be quite right, so I want to double-check.

6 OTHER CLASSES OF MATRICES

toeplitz A Toeplitz matrix is one where $A_{i, j}=A_{i+1, j+1}$ whenever the latter index is valid.
diagonal A diagonal matrix is one where only the main diagonal entries are set to non-zero values. An example is the identity matrix, where all the diagonal entries are 1.
tridiagonal A tridiagonal matrix is one where only three diagonals are set.
The most important classes of matrices:
Symmetric positive definite. M-matrices. Orthogonal matrices. Sparse.

[^0]: ${ }^{3}$ More generally, this is an instance of firsthitting time in Markov chains, but we don't need to get into the formalities of that characterization and generalization of the problem.

