
WORKING WITH SPARSE MATRICES

David F. Gleich
September 5, 2022

Learning objectives
Learn how to perform basic operations

with sparse matrices using the Candyland
matrix as an example.1 intro to candyland

As we mentioned, there are many real-world problems that involve sparse matrices. In
a few lectures, we’ll see how discretizations of Laplacian operator on 2d grids will give us
sparse matrices. For this class, we are going to continue working with random processes.

�e game of Candyland is played on 133 squares. At each turn, a player draws a card
from a deck of cards. �is determines where they move to for the next turn. �ere is no
interaction with other players (other than sharing the same deck). For our study here,
we are going to model the game where we simply draw a random card from the total
set at each time, so there is no memory at all in the game. �is means that the resulting
system is a Markov chain, or a memoryless stochastic process. While there is a great deal
of formality we can get into with all of these things, the key thing to remember is that what
happens at each step can just be described by a matrix that tells you the probability of what
happens next.

1.1 THE CANDYLAND MODEL
So we are going to create the matrix for Candyland that gives the probabilities of

moving between the 133 squares, along with two special squares; one for the start (state
140) and one for the destination (134) . �ere are also a set of 5 special cases that involve
exceptions to the rules (135,136,137,138,139).

In this case, the game of Candyland can be modeled with a 140 × 140 matrix T .1 If we 1 �e data �les to recreate T are available on
the the course website.show the matrix with a small ● for each nonzero entry, then it looks like2

2 TODO – Double check this one isn’t trans-
posed.

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

●● ●●● ●●●● ●●●●● ●●●●● ●●●●●● ●●●●●●● ●●● ●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●● ●● ●●● ●●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●●● ●●● ●● ●●● ●● ● ● ●● ●● ●

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

�is is clearly sparse as most of the matrix is empty. �is is because it’s impossible to get
between most pairs of squares in Candyland in a single move.

Let T = [t1 t2 . . . t140] be the column-wise partition. Where t j describes the
probability of ending up at each of the 140 states given that we are in state j. Put another way,
T(i , j) is the probability of moving to state i given that you are in state j. Consequently,

1

a�er one step of the game, the probability that the player is in any state can be read o�
from t140. �is is because the player starts in state 140.

Now, what’s the probability of being in any state a�er two-steps? We can use the matrix
to work out this probability:

Probability that player is in state i a�er two steps
=∑

k
Probability that player is in state k a�er one step and moves from k to i.

=∑
k
T(i , k)t140(k)

If we do this for all i, then we �nd that

p2 = Tt140
is the probability of the player being in any state a�er two steps. �is is just a matrix-vector
operation!

Now to �gure out where the player is a�er any number of steps, we proceed iteratively:

Probability that player is in state i a�er three steps
=∑

k
Probability that player is in state k a�er two steps and moves from k to i.

=∑
k
T(i , k)p2(k).

Again, by grouping everything together, we get:

p3 = Tp2 = T2t140 .

By induction now, we get that the probability the player is in any state a�er k steps:

pk = T k−1t140 .

�e key point: in order to compute this probability, we only need to compute
matrix-vector products with a sparse matrix.

1.2 COMPUTING EXPECTED LENGTH OF A CANDYLAND GAME
�e Candyland game ends when then the player is in state 134 in this particular model.

Let X be the random variable that is the length of the Candyland game. �en we want
to compute the expected value of X. Recall that the expected value of a discrete random
variable is:

E[X] =∑i where i is any possible value of x i ⋅ (probability that X = i).
�e probability that the game ends in 5 steps is3 3 �is is the 134 entry in the vector T4t140 .

[T4t140]134 .
Hence, the expected length of the Candyland game is:

E[X] = ∞∑
i=1

i ⋅ [T i−1t140]134 .
In practice, we can’t run this until in�nity, even though the game could, in theory, last

a very long time. We can compute this via the following algorithm. 4 4 In Julia, the code is
1 function candylandlength(T, maxlen)

2 n = size(T,1)

3 (p = zeros(n))[140] = 1

4 ex = 0.0

5 for l=1:len

6 p = T*p

7 ex += length*p[134]

8 end

9 return ex

10 end

Create a starting vector p = e140 because we start in state 140.

EX ← 0

For length = 1 to maximum game length considered

p← Tp
EX ← EX + length ⋅ p134

return EX

�e key algorithm step is to compute the matrix-vector product Tp.

2

2 sparse matrix storage: storing only the valid
transitions for candyland and performing a

matrix-vector product

�e idea with sparse matrix storage is that we only store the nonzero entries of the
matrix. Anything that is not stored is assumed to be zero. �is is illustrated in the following
�gure.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 16 13 0 0 0
0 0 10 12 0 0
0 4 0 0 14 0
0 0 9 0 0 20
0 0 0 7 0 4
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Indexed storage
3
5
14

3
2
4

5
6
4

5
4
7

2
3
10

1
3
13

2
4
12

4
6
20

4
3
9

1
2
16

I

J

V

�e arrays I, J, and V store the row index, column index, and nonzero value associated
with each nonzero entry in the matrix. �ere are 30 values in the arrays, whereas storing
all the entries in the matrix would need 36 values. Although this isn’t a particularly large
di�erence, is is less data.

For the matrix T in the Candyland problem, there are 6816 entries in the arrays I, J, V
whereas there would be 19600 entries in the matrix T had we stored all the zeros.

We can use this data structure to implement a matrix-vector product. Recall that

y = Axmeans that y i = ∑
j=1,. . . ,n

A i , jx j for all i .

If A i , j = 0 then it plays no role in the �nal summation and we can write the equivalent
expression:

y = Axmeans that y i = ∑
j where A i , j /=0

A i , jx j for all i .

�is means that an algorithm simply has to implement this accumulation over all nonzero
entries in the matrix. �is is exactly what is stored in the arrays I, J, V.

�e algorithm in Julia is:
1 function indexed_sparse_matrix_vector_product(x,I,J,V,m,n)

2 y = zeros(m)

3 for nzi=1:length(I)

4 i,j,v = I[nzi], J[nzi], V[nzi]

5 y[i] += v*x[j]

6 end

7 return y

8 end

�is algorithm can be translated to many other languages too.

3 eliminating redundant data storage: compressed
sparse row and column formats

�e idea with compressed sparse column storage is that some of the information in
the full indexed information is redundant if we sort all the data by column.5 5 We can also sort by row. �at discussion is

next.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 16 13 0 0 0
0 0 10 12 0 0
0 4 0 0 14 0
0 0 9 0 0 20
0 0 0 7 0 4
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Sorted index
2

1
16

2

3
4

3

1
13

3

2
10

3

4
9

4

2
12

4

5
7

5

3
14

6

4
20

6

5
4

J

I

V

Compressed sparse column
1 1 3 6 8 9 11

16
1

4
3

13
1

10
2

9
4

12
2

7
5

14
3

20
4

4
5 ∅rowval

colptr

nzval

3

�is �gure shows that when the data are sorted by increasing column index. �en
there are multiple values with the same column in adjacent entries of the J array. We
can compress these into a list of pointers. �is means that we create a new array called
colptr that stores the starting index for all the entries in I, V arrays associated with a given
column.

Entries of column j are stored in
rowval[colptr[j]]...rowval[colptr[j + 1] − 1]
nzval[colptr[j]]...nzval[colptr[j + 1] − 1] .

�is means if colptr[j] = colptr[j + 1] then there are no entries in the column. (See the
example in column 1.) �is

�is structure enables e�cient iteration over the elements of the matrix for matrix-
vector products, just like indexed storage, with only minimal changes to the loop. In Julia,
the algorithm is:6 6 �is algorithm is especially particular to

using 0 based or 1-based indexing.
1 function indexed_sparse_matrix_vector_product(x,colptr,rowval,nzval,m,n)

2 y = zeros(m)

3 for j=1:n

4 for nzi=colptr[j]:colptr[j+1]-1

5 i,v = rowval[nzi], nzval[nzi]

6 y[i] += v*x[j]

7 end

8 end

9 return y

10 end

Both Julia and Matlab use compressed sparse column formats for
their preferred sparse matrix format.

Advantages of compressed sparse column compared with indexed storage.
· less data / memory storage
· allows random access to column data
· allows per-column operations to be more e�cient

4 compressed sparse row

�e compressed sparse row format adopts compression of the rows. If we sort row
indices from an indexed format, then we can compress them into pointers just as in the
compressed sparse column format.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 16 13 0 0 0
0 0 10 12 0 0
0 4 0 0 14 0
0 0 9 0 0 20
0 0 0 7 0 4
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Sorted row index
1

2
16

1

3
13

2

3
10

2

4
12

3

2
4

3

5
14

4

3
9

4

6
20

5

4
7

5

6
4

I

J

V

Compressed sparse row
1 3 5 7 9 11 11

16
2

13
3

10
3

12
4

4
2

14
5

9
3

20
6

7
4

4
6 ∅colval

rowptr

nzval

Entries of row i are stored in
colval[rowptr[i]]...colval[rowptr[j + 1] − 1]
nzval[rowptr[j]]...nzval[rowptr[j + 1] − 1] .

If we were to implement the matrix-vector routine for compressed sparse rowmatrices,
however, there is an interesting optimization possible because all of the updates to the
output vector y happen in the same index.

4

1 function indexed_sparse_matrix_vector_product(x,rowptr,colval,nzval,m,n)

2 y = zeros(m)

3 for i=1:m

4 yi = 0.0

5 for nzi=rowptr[j]:rowptr[j+1]-1

6 j,v = colval[nzi], nzval[nzi]

7 yi += v*x[j]

8 end

9 y[i] = yi

10 end

11 return y

12 end

An important advantage of this CSR structure is that is is possible to parallelize the
sparse matrix vector routine over the rows of the matrix.

5 disadvantages of compressed storage formats

Amajor disadvantage of compressed sparse column and compressed sparse row for-
mats is that they cannot be easily altered once created.7 Adding a new nonzero element 7 If the number of elements that will change

are known ahead of time, then an alternative
is to simply insert them into the matrix struc-
ture with a “0” placeholder value. It is okay
to have zero entries in the data structures,
and it is okay to alter the values associated
with each nonzero element.

inside the matrix requires rebuilding the entire array. (Unless it is at the last column!) For
this reason, a common paradigm is to use indexed format while creating the information
for your matrix and then only convert to compressed sparse formats when it is time to
analyze the matrix and it will be �xed for a reasonably long period of time.

Another disadvantage is that we o�en want to have random access to both rows
and columns of a matrix. Compressed sparse column gives e�cient random access to
columns; compressed sparse row gives e�cient random access to rows. But �nding all the
information for a given row in a compressed sparse column structure involves searching
over all the elements. If both random row and random column access are needed, the
easiest solution is simply to store the matrix both in CSC and CSR formats. �is doubles
the storage space.8 8 Note that storing a matrix in CSR can be

accomplished by storing the transpose in
CSC. Likewise, storing a matrix in CSC can
be done by storing the transpose in CSR.6 alterative formats

Most programming languages have a standard hash table or dictionary implementa-
tion.9 �ese allow arbitrary key-value pairs to be inserted and give fast access and fast 9 In Julia, these are Dict types. In Python,

these are also called dictionaries. In C++ the
type is unordered_map. �e matrix type in
Julia would be: DictTupleInt,Int,Float64()
for Float64 values in the matrix. �is
idea is implemented in the package
SparseMatrixDicts.jl

update times. �is can be used as a sparse matrix data structure by using the key as an
index tuple and the value as the non-zero value. �is allows fast insertion and deletion of
elements. It does not allow fast random access to rows and columns.

For fast insertion and fast random access to rows and columns, then we can use an
array of hash tables.10 10 In Julia, the type would be Vector-

DictInt,Float64[].

5

	Intro to Candyland
	The Candyland Model
	Computing expected length of a Candyland game

	Sparse matrix storage: Storing only the valid transitions for Candyland and performing a matrix-vector product
	Eliminating redundant data storage: Compressed sparse row and column formats
	Compressed sparse row
	Disadvantages of compressed storage formats
	Alterative formats

