QR FACTORIZATION

David F. Gleich
August 21, 2023

1 LEAST SQUARES VIA QR FACTORIZATION AND ORTHOGONALIZATION

There is another approach to solving the least squares problems

$$
\operatorname{minimize}\|\mathbf{b}-\boldsymbol{A} \mathbf{x}\|
$$

besides the variable elimination procedure we saw in previous classes. I don't yet have a natural derivation of this particular idea, but I believe it originates around the following set of ideas.

- The geometry of the least squares problems involves working with the span of \boldsymbol{A} 's columns, or the range of \boldsymbol{A}. In particular, we want to find a point in the range that is as close as possible to \mathbf{b}.
- Since this involves working with the range of \boldsymbol{A}, it is "natural" to seek an orthogonal basis for it.

And this is what the QR factorization of a matrix encodes: an orthogonal basis for the columns of \boldsymbol{A}.

More formally, the QR factorization of a tall $m \times n$ matrix \boldsymbol{A} (with $m \geq n$) is a pair of matrices \boldsymbol{Q} and \boldsymbol{R} such that:

- $A=Q R$
- \boldsymbol{Q} is square $m \times m$ and orthogonal
- \boldsymbol{R} will also be upper-triangular and $m \times n$, but let's see where that comes from!

The upper-triangular structure appears to arise from early work by Schmidt on orthogonalizing a set of vectors. This is often called the "Gram-Schmidt process" and functions by successive orthogonalization. ${ }^{1}$

1.1 REVIEW OF GRAM-SCHMIDT

That is, if we are given a set of three vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ then the Gram-Schmidt process builds an orthonormal basis for their span, which is equivalent to building an orthogonal matrix \boldsymbol{Q} such that

$$
\left[\begin{array}{lll}
\mathbf{x} & \mathbf{y} & \mathbf{z}
\end{array}\right]=\mathbf{Q C}
$$

for some non-singular, square matrix \boldsymbol{C}. The Gram-Schmidt process begins with the first vector \mathbf{x} and sets the first column of \boldsymbol{Q} to be $\mathbf{x} /\|\mathbf{x}\|$. Then we project-out any component of \mathbf{x} on the other vectors. The matrix $\boldsymbol{P}(\mathbf{x})=\boldsymbol{I}-\frac{\mathbf{x} \mathbf{x}^{T}}{\mathbf{x}^{T} \mathbf{x}}$ is a projector ${ }^{2}$ to the space orthogonal to the vector \mathbf{x}. That is, $\mathbf{x}^{T} \boldsymbol{P}(\mathbf{x}) \mathbf{y}=\mathbf{x}^{T} \mathbf{y}-\frac{\mathbf{x}^{T} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} \mathbf{x}^{T} \mathbf{y}=0$. Hence, we compute $\mathbf{y}_{1}=\boldsymbol{P}(\mathbf{x}) \mathbf{y}$, $\mathbf{z}_{1}=\boldsymbol{P}(\mathbf{x}) \mathbf{z}$. The next vector $\mathbf{q}_{2}=\mathbf{y}_{1} /\left\|\mathbf{y}_{1}\right\|$. and we project \mathbf{z}_{2} via $\boldsymbol{P}\left(\mathbf{y}_{1}\right)$. This gives us three vectors:

$$
\boldsymbol{Q}=\left[\begin{array}{lll}
\mathbf{x} /\|\mathbf{x}\| & \mathbf{y}_{1} /\left\|\mathbf{y}_{1}\right\| & \mathbf{z}_{2} /\left\|\mathbf{z}_{2}\right\|
\end{array}\right]
$$

where $\mathbf{y}_{1}=\boldsymbol{P}(\mathbf{x}) \mathbf{y}$ and $\mathbf{z}_{2}=\boldsymbol{P}\left(\mathbf{y}_{1}\right) \boldsymbol{P}(\mathbf{x}) \mathbf{z}$. We can write this as a matrix equation as follows:

$$
\boldsymbol{A}=\left[\begin{array}{lll}
\mathbf{x} & \mathbf{y} & \mathbf{z}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{x} /\|\mathbf{x}\| & \mathbf{y}_{1} /\left\|\mathbf{y}_{1}\right\| & \mathbf{z}_{2} /\left\|\mathbf{z}_{2}\right\|
\end{array}\right]\left[\begin{array}{ccc}
\|\mathbf{x}\| & C_{1,2} & C_{1,3} \\
0 & \left\|\mathbf{y}_{1}\right\| & C_{2,3} \\
0 & 0 & \left\|\mathbf{z}_{2}\right\|
\end{array}\right]
$$

${ }^{1}$ I am looking into ways of re-deriving these ideas where the upper-triangular structure is one of a few possible natural choices depending on the ideas involved, but so far I haven't hit on anything easy. This review is meant to remind you of stuff you hopefully learned in previous linear algebra classes.
${ }^{2}$ A projector matrix projects vectors to
a subspace S. Because the output from a
projector is a new vector in a subspace S, it
must be the case that projecting to S again
will leave the result unchanged. Hence,
$\boldsymbol{P}^{2}=\boldsymbol{P}$ for any projector matrix!

Learning objectives

1. Target pieces of a matrix for an operation with pieces of the identity matrix.
where $C_{i, j}$ arises from the projection operations. Consider $C_{1,2}$, which we get from $\mathbf{y}_{1}=\boldsymbol{P}(\mathbf{x}) \mathbf{y}=\mathbf{y}-\frac{\mathbf{x}^{T} \mathbf{y}}{\mathbf{x}^{T} \mathbf{x}} \mathbf{x}$, we can write this to get $C_{i, j}$ for each.

Notice the similarity between this procedure and the successive elimination procedure we had in the previous class. I think this can be turned into a fairly natural derivation, but it requires a little more work.

The point of these derivations is that the Gram-Schmidt process produces an orthogonal basis for the columns of \boldsymbol{A} via successive orthogonalization, which can be written:

$$
A=Q R
$$

for an $m \times n$ matrix \boldsymbol{Q} and a square upper-triangular matrix $n \times n$ matrix \boldsymbol{R}. This is often called a "thin'' QR factorization because the matrix \boldsymbol{Q} isn't square but is tall instead.

1.2 GENERALIZING TO QR

The idea with the full QR factorization is that we can extend a "thin" QR factorization to a square matrix \mathbf{Q} because there are n orthogonal vectors in an n-dimensional space. Given any set of m orthogonal vector (say via Gram-Schmidt), then there exist another $m-n$ vectors that are mutually orthgonal as well. Of course, because these are orthogonal, we don't need to use them to write the matrix \boldsymbol{A}, so the "tail" of \boldsymbol{R} becomes zero.

1.3 USING QR TO SOLVE LEAST SQUARES

Now, let's show that we can use any QR factorization to compute a solution to the least squares problem. Note that $\|\mathbf{x}\|=\|\boldsymbol{Q} \mathbf{x}\|=\left\|\boldsymbol{Q}^{T} \mathbf{x}\right\|$ for any square orthogonal matrix \boldsymbol{Q}.

Hence, let $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{R}$ be any full QR factorization with a square matrix \boldsymbol{Q}, then

$$
\|\mathbf{b}-\boldsymbol{A} \mathbf{x}\|=\left\|\boldsymbol{Q}^{T} \mathbf{b}-\boldsymbol{Q}^{T} \boldsymbol{A} \mathbf{x}\right\|=\|\hat{\mathbf{b}}-\boldsymbol{R} \mathbf{x}\|=\left\|\left[\begin{array}{c}
\hat{\mathbf{b}}_{1} \\
\hat{\mathbf{b}}_{2}
\end{array}\right]-\left[\begin{array}{c}
\boldsymbol{R}_{1} \\
0
\end{array}\right] \mathbf{x}\right\| .
$$

Here, we used $\boldsymbol{R}=\left[\begin{array}{c}\boldsymbol{R}_{1} \\ 0\end{array}\right]$ where \boldsymbol{R}_{1} is the first set of n rows of \boldsymbol{R}. Because \boldsymbol{R} is uppertriangular, the other elements are always zero.

Note that this form helps us greatly! Note that no matter how we change \mathbf{x}, we cannot elminate $\hat{\mathbf{b}}_{2}$ from the difference between \mathbf{b} and $\boldsymbol{A} \mathbf{x}$. Hence, the best we can do to minimize the expression is to set \mathbf{x} so that $\hat{\mathbf{b}}_{1}=\boldsymbol{R}_{1} \mathbf{x}$.

Consequently, we can use any method to produce a QR factorization to solve a least squares problem via the following algorithm:

```
Compute a full or thin QR factorization.
Compute }\mp@subsup{\hat{\mathbf{b}}}{1}{}=\mathrm{ first n rows of Qb}\mathrm{ when }\boldsymbol{Q}\mathrm{ is full,
    or }\mp@subsup{\hat{\mathbf{b}}}{1}{}=\mp@subsup{\boldsymbol{Q}}{}{T}\mathbf{b}\mathrm{ when Q is m
Solve }\mp@subsup{\boldsymbol{R}}{1}{}\mathbf{X}=\mp@subsup{\hat{\mathbf{b}}}{1}{}
Return x
```


1.4 A GIVENS ROTATIONS AND QR FOR A SMALL VECTOR.

Consider the problem of computing a QR factorization for a 2×1 vector \mathbf{v}. Recall that an orthogonal matrix is a generalization of a rotation, so we can write it as:

$$
\boldsymbol{Q}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

Let's see how to pick \boldsymbol{Q} for \mathbf{v}.
An obvious way is to try and compute θ in the above expression such that

$$
\boldsymbol{Q}(\theta) \mathbf{v}=\gamma \mathbf{e}_{1}
$$

for some γ.

However, there is a better way to do this! Note that $\boldsymbol{Q}(\theta)$ only has two unknowns, $c=\cos \theta$ and $s=\sin \theta$. To compute \boldsymbol{Q}, we just need these two values! Let's write out the equations:

$$
\left[\begin{array}{cc}
c & s \\
-s & c
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
\gamma \\
0
\end{array}\right]
$$

This gives two equations and two unknowns.

$$
v_{1} c+v_{2} s=\gamma \text { and } v_{2} c-v_{1} s=0
$$

We can solve these to get ${ }^{3}$ Some discussion of how this impacts numerical software is \}

$$
c=v_{1} / \gamma \text { and } s=v_{2} / \gamma
$$

Because the matrix is orthgonal, we must have $\gamma=\sqrt{v_{1}^{2}+v_{2}^{2}}$ or $\gamma=-\sqrt{v_{1}^{2}+v_{2}^{2}}$ so that the length of \mathbf{v} doesn't change.

This 2×2 matrix $\boldsymbol{Q}(\theta)$ is called a Givens rotation.

1.5 THE QR FACTORIZATION FOR A $3 X 1$ VECTOR.

Suppose \mathbf{v} is 3×1. Then we could seek to build a 2 d rotation matrix and solve for the coefficients. However, there is an alternative mechanism where we can use matrix structure. Let $\mathbf{v}=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]^{T}$. Let \$

1.6 GIVENS ROTATIONS IN JULIA

We can compute Givens rotations in J

1.7 COMPUTING QR FOR A COLUMN

Consider computing a $Q R$ factorization for a $n \times 1$ vector \mathbf{v} now. By the definition, we have:

$$
\mathbf{Q v}=\gamma \mathbf{e}_{1} .
$$

where $\gamma= \pm\|\mathbf{v}\|$.
${ }^{3}$ The solution here is not unique. Note that we can negate these values as well as they are also a solution. See more discussion in https://netlib.org/lapack/lawnspdf/ lawn148.pdf

