Preconditioning is the process of taking a given linear system:

$$
A \mathbf{x}=\mathbf{b}
$$

and turning it into a new linear system (with \boldsymbol{B} non-singular):

$$
B y=c
$$

such that it's "easy" to find \mathbf{x} from \mathbf{y} and

$$
\text { an iterative method for } \boldsymbol{B} \mathbf{y}=\mathbf{c} \text { is }\left\{\begin{array}{c}
\text { faster } \\
\text { more accurate } \\
\text { better behaved } \\
\text { convergent } \\
\text { easier, } \ldots
\end{array}\right\} \text {. }
$$

The standard preconditioner. The standard goal with preconditioning is to make an iterative method for $\boldsymbol{A x}=\mathbf{b}$ go faster. Typically this is done by taking a non-singular matrix \boldsymbol{M} and looking at the linear system: ${ }^{1}$

$$
M A \mathbf{x}=M \mathbf{b}
$$

The standard idea is that $\boldsymbol{M A} \approx \boldsymbol{I}$, and we'll see how to make this idea precise shortly. Also, we need a fast way to create \boldsymbol{M}, and to multiply \boldsymbol{M} by a vector. While this seems like an easy task, many preconditioners involve solving a system, hence, $\boldsymbol{M}=\boldsymbol{P}^{-1}$ for some matrix \boldsymbol{P} (which could also be called a preconditioner!). Thus, just multiplying by \boldsymbol{M} can be expensive itself.

Quiz Why do we need \boldsymbol{M} to be non-singular?
Question 1 (The fundamental question in preconditioning) Thus, we arise at the fundamental question. Given $\mathbf{A x}=\mathbf{b}$, how do I pick \boldsymbol{M} or \boldsymbol{P} such that I actually make the iterative method faster?

SOME THOUGHTS ON PRECONDITIONING

There is no universal preconditioner. A great open problem is to find a preconditioning strategy that works for all matrices A. Recently, there has been some work on how to do this for symmetric, diagonally dominant linear systems; ${ }^{2}$

Preconditioning is more art than science. As you might then expect, much of preconditioning is based on well-informed heuristic procedures. These are ideas that are theoretically grounded, but often make a leap. Some leaps are more effective than others!

When possible, precondition the problem, not the matrix. Suppose that our problem $\boldsymbol{A x}=\mathbf{b}$ arises from a physics-based application or a complex engineered system. The problem that we want to solve gives rise to some matrix \boldsymbol{A} and some right hand side \mathbf{b}. While we could study the matrix \boldsymbol{A} and attempt to use a matrix-based preconditioner on \boldsymbol{A}, it is often a better strategy to attempt to decompose your problem as:
$\boldsymbol{A}=$ approximation with analytical solution given a right hand-side + correction.
In which case, we really have:

$$
\boldsymbol{A}=\underbrace{\boldsymbol{S}}_{\text {simple }}+\underbrace{\boldsymbol{C}}_{\text {correction }}
$$

and $\boldsymbol{M}=\boldsymbol{S}^{-1}$ is a good preconditioner because

$$
\boldsymbol{S}^{-1} A=\boldsymbol{I}+\boldsymbol{S}^{-1} C .
$$

The notes here are my own, based on Golub and van Loan, Trefethen, and Saad's textbooks, respectively.
${ }^{1}$ So in this case $\boldsymbol{B}=\boldsymbol{M} \boldsymbol{A}, \mathbf{x}=\mathbf{y}$ and $\mathbf{c}=\boldsymbol{M} \mathbf{b}$.
${ }^{2}$ This is the celebrated Spielman and Teng nearly-linear time solver for SDD systems. The current runtime is $O(\mathrm{nnz} \sqrt{\log n})$ in theory, which means that it's faster to solve $A \mathbf{x}=\mathbf{b}$ with a SDD matrix than it is to sort a vector. It's currently unknown how to extend that work to symmetric, positive definite systems, however.

1 A MORE FORMAL TREATMENT.

The following theorem justifies why S^{-1} would be a good preconditioner.

THEOREM 2 (Golub and van Loan, 3rd edition, 10.2.5) ${ }^{3}$ If $\boldsymbol{A}=\boldsymbol{I}+\boldsymbol{B}$ is an n-by-n symmetric postive definite matrix and $\operatorname{rank}(\boldsymbol{B})=r$, then Krylov methods converge in at most $r+1$ iterations.

Proof This is a standard proof strategy. We show that in at most $r+1$ iterations, the Krylov space $\mathbb{K}_{r+1}(A, \mathbf{b})$ contains the solution \mathbf{x}. To do so, note that:

$$
\begin{aligned}
\mathbb{K}_{k}(\boldsymbol{A}, \mathbf{b}) & =\operatorname{span}\left(\mathbf{b}, \boldsymbol{A} \mathbf{b}, \ldots, \boldsymbol{A}^{k-1} \mathbf{b}\right) \\
& =\operatorname{span}\left(\mathbf{b},(\boldsymbol{I}+\boldsymbol{B}) \mathbf{b},(\boldsymbol{I}+\boldsymbol{B})^{2} \ldots,(\boldsymbol{I}+\boldsymbol{B})^{k-1} \mathbf{b}\right) \\
& =\operatorname{span}\left(\mathbf{b}, \boldsymbol{B} \mathbf{b}, \boldsymbol{B}^{2} \mathbf{b}, \ldots, \boldsymbol{B}^{k-1} \mathbf{b}\right)
\end{aligned}
$$

Because \boldsymbol{B} has rank r, we know that \boldsymbol{B}^{r} has some polynomial expression in lower powers ${ }^{4}$; thus, the Krylov subspace terminates at this step and we know the space must contain the solution. Because of the optimality properties, any Krylov method will terminate in $r+1$ steps in exact arithmetic.

More generally speaking, we have the following theorem on the convergence of CG.
THEOREM 3 (Trefethen 38.5) Let the CG iteration be applied to a symmetric positive definite linear system $\mathbf{A x}=\mathbf{b}$, where \boldsymbol{A} has 2-norm condition number κ. Then there is a norm $\|\mathbf{z}\|_{*}$ where

$$
\left\|\mathbf{x}-\mathbf{x}_{k}\right\|_{*} \leq 2\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{*}\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k}
$$

This gives rise to a linear convergence theorem that depends on the condition number of a matrix:

$$
\left\|\mathbf{x}-\mathbf{x}_{k}\right\|_{*}=O\left(\rho^{k}\right)
$$

where ρ depends on κ.
Quiz What is $\kappa(I)$?
Suppose $\kappa(\boldsymbol{A})$ is big (like one hundred million), then what happens? We get $\rho \approx 1$ (like o.99999999).

Suppose $\kappa(\boldsymbol{A})$ is nearly 1 (like 16), then what happens? We get $\rho \approx 0$ (like 3/5).

So given any linear system, if we take $\boldsymbol{M}=\boldsymbol{A}^{-1}$, we will converge in one step. But, computing $M^{-1} \mathbf{x}$ is just as expensive as our original problem. So we want something cheaper.

2 DESIGNING A PRECONDITIONER

The above theorems motivate three different types of preconditioners:

1. Find a matrix \boldsymbol{P} where \boldsymbol{P}^{-1} is a fast operator and $\boldsymbol{P}^{-1} \boldsymbol{A} \approx \boldsymbol{I}$, i.e. $\kappa(\boldsymbol{M} \boldsymbol{A}) \ll \kappa(\boldsymbol{A})$.
2. Find a matrix \boldsymbol{P} where \boldsymbol{P}^{-1} is a fast operator and $\boldsymbol{P}^{-1} \boldsymbol{A}=\boldsymbol{I}+$ low-rank.
${ }^{3}$ In the third edition, they split this into 11.3.1 and 11.3.2.
${ }^{4}$ This is a corrolary of the Cayley-Hamilton theorem, among other facts.
3. Find a matrix \boldsymbol{P} where \boldsymbol{P}^{-1} is a fast operator and $\boldsymbol{P}^{-1} \boldsymbol{A}=$ has few eigenvalues.

In all cases we need \boldsymbol{P} to be something that is easy to find as well.
Quiz Why do we get the 3rd type of preconditioner? (This is not a simple answer, but does follow from the properties of Krylov subspaces; try showing $\operatorname{dim}\left(\mathbb{K}_{k}(\boldsymbol{A}, \mathbf{b})\right) \leq 2$ when \boldsymbol{A} is diagonalizable with two distinct eigenvalues.)

SOME SUBTLETIES

Suppose we want to use conjugate gradient. Then we need \boldsymbol{A} to be symmetric positive and definite. Suppose we have a matrix $\boldsymbol{M} \boldsymbol{A}$ where \boldsymbol{M} is fast operator and easy to find. Can we always use CG? No, because

$$
\boldsymbol{M} \boldsymbol{A} \neq(\boldsymbol{M} \boldsymbol{A})^{T}
$$

in general.

3 TYPES OF PRECONDITIONERS

Thus, we consider four types of preconditioners:

For the CG case above, we want to use a symmetric preconditioner to preserve symmetry. Often, these are written with C :

$$
\underbrace{C^{-1} A C^{-T}}_{B} \mathbf{y}=C^{-1} \mathbf{b} \quad \mathbf{x}=C^{-1} \mathbf{y}
$$

With the hope that \boldsymbol{B} has a small condition number, or clustered eigenvalues, ...

3.1 ENSURING POSITIVE DEFINITENESS

We also need $\boldsymbol{C}^{-1} \boldsymbol{A} \boldsymbol{C}^{-T}$ to be positive definite when \boldsymbol{A} is. We can insure this by taking $\boldsymbol{C C}^{T}$ as the Cholesky factorization of any positive definite matrix \boldsymbol{T}.

3.2 OPTIMIZING CG

Once we know we are solving a preconditioned linear system, it's often advantageous to know this in the linear solver. We can rewrite CG optimally to use a preconditioner like in Golub and van Loan (4th edition) 11.5.7.

4 EXAMPLES OF PRECONDITIONERS

4.1 DIAGONALS

The simplest case of preconditioning is to use the diagonal entries. Let $\boldsymbol{A}=\boldsymbol{D}+\boldsymbol{N}$ (be a splitting into the diagonal and off-diagonal terms), then:

$$
M=D^{-1}
$$

is a preconditioner that makes

$$
M A=I+D^{-1} N
$$

Quiz Is it always easy to use a diagonal precondition on a matrix?
Quiz How could you do symmetric diagonal preconditioning?

4.2 POLYNOMIALS

Recall the expansion of \boldsymbol{A}^{-1} as it's Neumann series:5

$$
(I-A)^{-1}=I+A+A^{2}+A^{3}+\ldots
$$

Then we can use a finite truncation as the preconditioner to $\mathbf{A x}=\mathbf{b}$:

$$
M \approx A^{-1}=\boldsymbol{I}+(\boldsymbol{I}-\boldsymbol{A})+(\boldsymbol{I}-\boldsymbol{A})^{2}+(\boldsymbol{I}-\boldsymbol{A})^{3} .
$$

4.3 INCOMPLETE FACTORIZATIONS

Incomplete Cholesky and Incomplete LU are both factorizations:

$$
\boldsymbol{A}=\boldsymbol{C} \boldsymbol{C}^{T}-\boldsymbol{R} \quad \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}^{T}-\boldsymbol{R}
$$

that are Cholesky-like and LU-like, but that have a new residual term. We call them incomplete if \boldsymbol{R} has a zero-entry whenever \boldsymbol{A} is non-zero. Thus, these ideas can be used for large sparse systems.

Any symmetric, positive definite matrix with a non-negative inverse (called a Stieltjes matrix) has an incomplete Cholesky factorization as worked out in Golub and van Loan.

4.4 SPARSE APPROXIMATE INVERSES

Suppose we want the best tridiagonal preconditioner for a matrix \boldsymbol{A}. To find this, we could consider the best approximation of the inverse:

$$
\begin{array}{ll}
\operatorname{minimize} & \|\boldsymbol{I}-\boldsymbol{A} \boldsymbol{M}\| \\
\text { subject to } & \boldsymbol{M} \text { is tridiagonal. }
\end{array}
$$

The sparsity structure should be given, so the more general problem is, given sparsity structure matrix S :

$$
\begin{array}{ll}
\operatorname{minimize} & \|\boldsymbol{I}-\boldsymbol{A} \boldsymbol{M}\| \\
\text { subject to } & \boldsymbol{M} \text { has the same non-zeros as } \boldsymbol{S} .
\end{array}
$$

Consider the tridiagonal case. We can compute \boldsymbol{M} a column at a time:
Let $\boldsymbol{M e}_{i}=\mathbf{m}_{i}=\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ \alpha \\ \beta \\ \gamma \\ 0 \\ \vdots \\ 0\end{array}\right]$ then $\left[\begin{array}{c}\alpha \\ \beta \\ \gamma\end{array}\right]$ solve minimize $\left\|\mathbf{e}_{i}-\left[\begin{array}{lll}\boldsymbol{A}_{i-1} & \boldsymbol{A}_{i} & \boldsymbol{A}_{i+1}\end{array}\right]\left[\begin{array}{c}\alpha \\ \beta \\ \gamma\end{array}\right]\right\|$.

4.5 MULTI-GRID

Recall how we thought about approximating the problem as a type of preconditioning. Suppose that $A \mathbf{x}=\mathbf{b}$ arises from a n-by- n discretization of Poisson's equation. This gives us an $n^{2} \times n^{2}$ linear system: $\boldsymbol{A x}=\mathbf{b}$. Now, what if we had solved Poisson's equation for an $n / 2$-by- $n / 2$ node discretization instead? This is a continuous equation, so we might hope it's reasonable to guess that simply interpolating the solution would give us a good approximation to $A \mathbf{x}=\mathbf{b}$? But then, we could repeat the same argument and use an $n / 4$-by- $n / 4$ node discretization, and so on and so forth.

This idea gives rise to a preconditioner called multi-grid that is incredible at solving Poisson's equations. Using a multi-grid strategy allows us to solve $\mathbf{A x}=\mathbf{b}$ in time $O\left(n^{2}\right)$ where the system has size $n^{2} \times n^{2}$. This is a linear time algorithm! ${ }^{6}$
${ }^{5}$ This is a matrix based on the geometric series: $1+t+t^{2}+\ldots=\frac{1}{1-t}$

