PRECONDITIONING LINEAR SYSTEMS

David F. Gleich
November 25, 2019

Preconditioning is the process of taking a given linear system:
Ax=b
and turning it into a new linear system (with B non-singular):

By=c

>« »

such that it’s “easy” to find x from y and

faster
more accurate
an iterative method for By = cis { better behaved
convergent
easier, ...

The standard preconditioner. The standard goal with preconditioning is to make an
iterative method for Ax = b go faster. Typically this is done by taking a non-singular
matrix M and looking at the linear system: '

MAx = Mb.

The standard idea is that MA ~ I, and well see how to make this idea precise shortly.
Also, we need a fast way to create M, and to multiply M by a vector. While this seems like
an easy task, many preconditioners involve solving a system, hence, M = P~ for some
matrix P (which could also be called a preconditioner!). Thus, just multiplying by M can
be expensive itself.

Quiz Why do we need M to be non-singular?

Question 1 (The fundamental question in preconditioning) Thus, we arise at the fundamental question.
Given Ax = b, how do I pick M or P such that I actually make the iterative method faster?

SOME THOUGHTS ON PRECONDITIONING

There is no universal preconditioner. A great open problem is to find a preconditioning
strategy that works for all matrices A. Recently, there has been some work on how to do
this for symmetric, diagonally dominant linear systems;*

Preconditioning is more art than science. ~As you might then expect, much of pre-
conditioning is based on well-informed heuristic procedures. These are ideas that are
theoretically grounded, but often make a leap. Some leaps are more effective than others!

When possible, precondition the problem, not the matrix. Suppose that our problem
Ax = b arises from a physics-based application or a complex engineered system. The
problem that we want to solve gives rise to some matrix A and some right hand side b.
While we could study the matrix A and attempt to use a matrix-based preconditioner on
A, it is often a better strategy to attempt to decompose your problem as:

A = approximation with analytical solution given a right hand-side + correction.
In which case, we really have:
A= § + C
~—— ——
simple correction

and M = S™' is a good preconditioner because

s'A=1+S"'C.

The notes here are my own, based on Golub
and van Loan, Trefethen, and Saad’s text-
books, respectively.

' So in this case B = MA, x = yand ¢ = Mb.

> This is the celebrated Spielman and Teng
nearly-linear time solver for SDD systems.
The current runtime is O(nnz\/logn) in
theory, which means that it’s faster to solve
Ax = b with a SDD matrix than it is to sort a
vector. It’s currently unknown how to extend
that work to symmetric, positive definite
systems, however.

1 A MORE FORMAL TREATMENT.

The following theorem justifies why $™' would be a good preconditioner.

THEOREM 2 (Golub and van Loan, 3rd edition, 10.2.5) 3 If A = I+ B is an n-by-n symmetric postive
definite matrix and rank(B) = r, then Krylov methods converge in at most r + 1 iterations.

Proof This is a standard proof strategy. We show that in at most r + 1 iterations, the Krylov
space K, 11 (A, b) contains the solution x. To do so, note that:

K (A,b) = span(b, Ab, ..., AF"'b)
= span(b, (I+B)b, (I+B)*...,(I+B)"'b)
= span(b, Bb, B®b, ..., B*"'b).
Because B has rank r, we know that B” has some polynomial expression in lower powers*;
thus, the Krylov subspace terminates at this step and we know the space must contain the

solution. Because of the optimality properties, any Krylov method will terminate in r + 1
steps in exact arithmetic. n

More generally speaking, we have the following theorem on the convergence of CG.

THEOREM 3 (Trefethen 38.5) Let the CG iteration be applied to a symmetric positive definite
linear system Ax = b, where A has 2-norm condition number x. Then there is a norm ||z,

where .
VE-1
Ve+rl) o

This gives rise to a linear convergence theorem that depends on the condition number
of a matrix:

% =%, §2|X—Xo|*(

x —xll, = O(p")
where p depends on «.
Quiz What is x(I)?
Suppose x(A) is big (like one hundred million), then what happens? We get p ~ 1
(like 0.99999999).

Suppose x(A) is nearly 1 (like 16), then what happens? We get p ~ 0 (like 3/5).

So given any linear system, if we take M = A™', we will converge in one step. But,
computing M~'x is just as expensive as our original problem. So we want something
cheaper.

2 DESIGNING A PRECONDITIONER
The above theorems motivate three different types of preconditioners:

1. Find a matrix P where P~ is a fast operator and P"'A ~ I, i.e. k(MA) < x(A).

2. Find a matrix P where P™" is a fast operator and P~' A = I + low-rank.

* In the third edition, they split this into 11.3.1
and 11.3.2.

* This is a corrolary of the Cayley-Hamilton
theorem, among other facts.

3. Find a matrix P where P! is a fast operator and P~' A = has few eigenvalues.

In all cases we need P to be something that is easy to find as well.

Quiz Why do we get the 3rd type of preconditioner? (This is not a simple answer, but
does follow from the properties of Krylov subspaces; try showing dim(Ky(A,b)) < 2
when A is diagonalizable with two distinct eigenvalues.)

SOME SUBTLETIES

Suppose we want to use conjugate gradient. Then we need A to be symmetric positive
and definite. Suppose we have a matrix MA where M is fast operator and easy to find.
Can we always use CG? No, because

MA# (MA)T

in general.

3 TYPES OF PRECONDITIONERS

Thus, we consider four types of preconditioners:

Left solve MAx= Mb

B c
Right solve AM (M 'x)=b
W—"(_/
B

y
Left &Right solve M;AM, (M;'x) = M;b
———— — N——
B y c

Symmetric solve MAMT (M "x) = Mb
—_—— ——

B y c

For the CG case above, we want to use a symmetric preconditioner to preserve sym-
metry. Often, these are written with C:
c'acTy=c'p x=Cy.
———
B

With the hope that B has a small condition number, or clustered eigenvalues, ...

3.1 ENSURING POSITIVE DEFINITENESS
We also need C"'AC™ to be positive definite when A is. We can insure this by taking
CCT as the Cholesky factorization of any positive definite matrix T.

3.2 OPTIMIZING CG

Once we know we are solving a preconditioned linear system, it’s often advantageous
to know this in the linear solver. We can rewrite CG optimally to use a preconditioner like
in Golub and van Loan (4th edition) 11.5.7.

4 EXAMPLES OF PRECONDITIONERS

4.1 DIAGONALS
The simplest case of preconditioning is to use the diagonal entries. Let A = D + N (be
a splitting into the diagonal and off-diagonal terms), then:

M=D"!

is a preconditioner that makes
MA=1+D"'N.

Quiz Is it always easy to use a diagonal precondition on a matrix?
Quiz How could you do symmetric diagonal preconditioning?

4.2 POLYNOMIALS
Recall the expansion of A" as it's Neumann series:5

(I-A)'=T+A+A*+ A% +....
Then we can use a finite truncation as the preconditioner to Ax = b:

Mrc A =T+ (I-A)+(I-A)+(I-A)°.

4.3 INCOMPLETE FACTORIZATIONS
Incomplete Cholesky and Incomplete LU are both factorizations:

A=CC'-R A=LUT-R

that are Cholesky-like and LU-like, but that have a new residual term. We call them
incomplete if R has a zero-entry whenever A is non-zero. Thus, these ideas can be used
for large sparse systems.

Any symmetric, positive definite matrix with a non-negative inverse (called a Stieltjes

matrix) has an incomplete Cholesky factorization as worked out in Golub and van Loan.

4.4 SPARSE APPROXIMATE INVERSES
Suppose we want the best tridiagonal preconditioner for a matrix A. To find this, we
could consider the best approximation of the inverse:

minimize |I- AM]|

subject to M is tridiagonal.

The sparsity structure should be given, so the more general problem is, given sparsity
structure matrix S:

minimize |I-AM]|

subjectto M has the same non-zeros as S.

Consider the tridiagonal case. We can compute M a column at a time:

0
0
a a o
Let Me; =m; = || then |f| solve minimize Hei—[Ai_l A; A,~+1] Bl
Y 4 4
0
| 0

4.5 MULTI-GRID

Recall how we thought about approximating the problem as a type of preconditioning.
Suppose that Ax = b arises from a n-by-n discretization of Poisson’s equation. This gives
us an n* x n? linear system: Ax = b. Now, what if we had solved Poisson’s equation for
an n/2-by-n/2 node discretization instead? This is a continuous equation, so we might
hope it’s reasonable to guess that simply interpolating the solution would give us a good
approximation to Ax = b? But then, we could repeat the same argument and use an
n/4-by-n/4 node discretization, and so on and so forth.

This idea gives rise to a preconditioner called multi-grid that is incredible at solving
Poisson’s equations. Using a multi-grid strategy allows us to solve Ax = b in time O(n?)
where the system has size n> x n®. This is a linear time algorithm!

5 This is a matrix based on the geometric

series:1+t+t2+...=ﬁ

¢ Demmel’s textbook: Applied Numerical
Linear Algebra has a nice treatment of this
algorithm.

	A more formal treatment.
	Designing a preconditioner
	Types of preconditioners
	Ensuring positive definiteness
	Optimizing CG

	Examples of preconditioners
	Diagonals
	Polynomials
	Incomplete factorizations
	Sparse approximate inverses
	Multi-grid

