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�e notes here are my own, based on Golub
and van Loan, Trefethen, and Saad’s text-
books, respectively.

Preconditioning is the process of taking a given linear system:

Ax = b

and turning it into a new linear system (with B non-singular):

By = c

such that it’s “easy” to �nd x from y and

an iterative method for By = c is
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convergent
easier, . . .
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�e standard preconditioner. �e standard goal with preconditioning is to make an
iterative method for Ax = b go faster. Typically this is done by taking a non-singular
matrix M and looking at the linear system: 1 1 So in this case B = MA, x = y and c = Mb.

MAx = Mb.

�e standard idea is that MA ≈ I, and we’ll see how to make this idea precise shortly.
Also, we need a fast way to create M, and tomultiply M by a vector. While this seems like
an easy task,many preconditioners involve solving a system, hence, M = P−1 for some
matrix P (which could also be called a preconditioner!). �us, just multiplying by M can
be expensive itself.

QuizWhy do we need M to be non-singular?

Question 1 (The fundamental question in preconditioning) �us, we arise at the fundamental question.
Given Ax = b, how do I pick M or P such that I actually make the iterative method faster?

SOME THOUGHTS ON PRECONDITIONING
�ere is no universal preconditioner. A great open problem is to �nd a preconditioning
strategy that works for all matrices A. Recently, there has been some work on how to do
this for symmetric, diagonally dominant linear systems;2 2 �is is the celebrated Spielman and Teng

nearly-linear time solver for SDD systems.
�e current runtime is O(nnz

√

log n) in
theory, which means that it’s faster to solve
Ax = b with a SDDmatrix than it is to sort a
vector. It’s currently unknown how to extend
that work to symmetric, positive de�nite
systems, however.

Preconditioning is more art than science. As you might then expect, much of pre-
conditioning is based on well-informed heuristic procedures. �ese are ideas that are
theoretically grounded, but o�en make a leap. Some leaps are more e�ective than others!

When possible, precondition the problem, not the matrix. Suppose that our problem
Ax = b arises from a physics-based application or a complex engineered system. �e
problem that we want to solve gives rise to some matrix A and some right hand side b.
While we could study the matrix A and attempt to use a matrix-based preconditioner on
A, it is o�en a better strategy to attempt to decompose your problem as:

A = approximation with analytical solution given a right hand-side + correction.

In which case, we really have:

A = S
´¸¶

simple

+ C
´¸¶

correction

and M = S−1 is a good preconditioner because

S−1A = I + S−1C .
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1 a more formal treatment.

�e following theorem justi�es why S−1 would be a good preconditioner.

THEOREM 2 (Golub and van Loan, 3rd edition, 10.2.5) 3 If A = I +B is an n-by-n symmetric postive 3 In the third edition, they split this into 11.3.1
and 11.3.2.de�nite matrix and rank(B) = r, then Krylov methods converge in at most r + 1 iterations.

Proof �is is a standard proof strategy. We show that in at most r + 1 iterations, the Krylov
spaceKr+1(A, b) contains the solution x. To do so, note that:

Kk(A, b) = span(b,Ab, . . . ,Ak−1b)
= span(b, (I + B)b, (I + B)2 . . . , (I + B)k−1b)
= span(b, Bb, B2b, . . . , Bk−1b).

Because B has rank r, we know that Br has some polynomial expression in lower powers4; 4 �is is a corrolary of the Cayley-Hamilton
theorem, among other facts.thus, the Krylov subspace terminates at this step and we know the space must contain the

solution. Because of the optimality properties, any Krylov method will terminate in r + 1
steps in exact arithmetic. ∎

More generally speaking, we have the following theorem on the convergence of CG.

THEOREM 3 (Trefethen 38.5) Let the CG iteration be applied to a symmetric positive de�nite
linear system Ax = b, where A has 2-norm condition number κ. �en there is a norm ∥z∥

∗

where

∥x − xk∥∗ ≤ 2∥x − x0∥∗ (
√

κ − 1
√

κ + 1
)

k

.

�is gives rise to a linear convergence theorem that depends on the condition number
of a matrix:

∥x − xk∥∗ = O(ρk
)

where ρ depends on κ.
QuizWhat is κ(I)?
Suppose κ(A) is big (like one hundred million), then what happens? We get ρ ≈ 1

(like 0.99999999).

Suppose κ(A) is nearly 1 (like 16), then what happens? We get ρ ≈ 0 (like 3/5).

So given any linear system, if we take M = A−1, we will converge in one step. But,
computing M−1x is just as expensive as our original problem. So we want something
cheaper.

2 designing a preconditioner

�e above theorems motivate three di�erent types of preconditioners:

1. Find a matrix P where P−1 is a fast operator and P−1A ≈ I, i.e. κ(MA) ≪ κ(A).

2. Find a matrix P where P−1 is a fast operator and P−1A = I + low-rank.

2



3. Find a matrix P where P−1 is a fast operator and P−1A = has few eigenvalues.

In all cases we need P to be something that is easy to �nd as well.
QuizWhy do we get the 3rd type of preconditioner? (�is is not a simple answer, but

does follow from the properties of Krylov subspaces; try showing dim(Kk(A, b)) ≤ 2
when A is diagonalizable with two distinct eigenvalues.)

SOME SUBTLETIES
Suppose we want to use conjugate gradient. �en we need A to be symmetric positive

and de�nite. Suppose we have a matrix MA where M is fast operator and easy to �nd.
Can we always use CG? No, because

MA /= (MA)T

in general.

3 types of preconditioners

�us, we consider four types of preconditioners:

Le� solve MA
´¸¶

B

x = Mb
´¸¶

c
Right solve AM

´¸¶

B

(M−1x)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

y

= b

Le� &Right solve M1AM2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

B

(M−1
2 x)

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

y

= M1b
´¸¶

c

Symmetric solve MAMT

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

B

(M−Tx)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

y

= Mb
´¸¶

c

For the CG case above, we want to use a symmetric preconditioner to preserve sym-
metry. O�en, these are written with C:

C−1AC−T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B

y = C−1b x = C−1y.

With the hope that B has a small condition number, or clustered eigenvalues, ...

3.1 ENSURING POSIT IVE DEFINITENESS

We also need C−1AC−T to be positive de�nite when A is. We can insure this by taking
CCT as the Cholesky factorization of any positive de�nite matrix T .

3.2 OPTIMIZ ING CG
Once we know we are solving a preconditioned linear system, it’s o�en advantageous

to know this in the linear solver. We can rewrite CG optimally to use a preconditioner like
in Golub and van Loan (4th edition) 11.5.7.

4 examples of preconditioners

4.1 DIAGONALS
�e simplest case of preconditioning is to use the diagonal entries. Let A = D + N (be

a splitting into the diagonal and o�-diagonal terms), then:

M = D−1

is a preconditioner that makes
MA = I + D−1N .

Quiz Is it always easy to use a diagonal precondition on a matrix?
QuizHow could you do symmetric diagonal preconditioning?
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4.2 POLYNOMIALS

Recall the expansion of A−1 as it’s Neumann series:5 5 �is is a matrix based on the geometric
series: 1 + t + t2 + . . . = 1

1−t
(I − A)−1 = I + A+ A2

+ A3
+ . . . .

�en we can use a �nite truncation as the preconditioner to Ax = b:

M ≈ A−1 = I + (I − A) + (I − A)2 + (I − A)3 .

4.3 INCOMPLETE FACTORIZATIONS
Incomplete Cholesky and Incomplete LU are both factorizations:

A = CCT
− R A = LU T

− R

that are Cholesky-like and LU-like, but that have a new residual term. We call them
incomplete if R has a zero-entry whenever A is non-zero. �us, these ideas can be used
for large sparse systems.

Any symmetric, positive de�nite matrix with a non-negative inverse (called a Stieltjes
matrix) has an incomplete Cholesky factorization as worked out in Golub and van Loan.

4.4 SPARSE APPROXIMATE INVERSES
Suppose we want the best tridiagonal preconditioner for a matrix A. To �nd this, we

could consider the best approximation of the inverse:

minimize ∥I − AM∥

subject to M is tridiagonal.

�e sparsity structure should be given, so the more general problem is, given sparsity
structure matrix S:

minimize ∥I − AM∥

subject to M has the same non-zeros as S .

Consider the tridiagonal case. We can compute M a column at a time:

Let Mei =mi =

⎡
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0
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then
⎡
⎢
⎢
⎢
⎢
⎢
⎣

α
β
γ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

solve minimize ∥ei − [Ai−1 Ai Ai+1]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α
β
γ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∥ .

4.5 MULTI -GRID
Recall how we thought about approximating the problem as a type of preconditioning.

Suppose that Ax = b arises from a n-by-n discretization of Poisson’s equation. �is gives
us an n2

× n2 linear system: Ax = b. Now, what if we had solved Poisson’s equation for
an n/2-by-n/2 node discretization instead? �is is a continuous equation, so we might
hope it’s reasonable to guess that simply interpolating the solution would give us a good
approximation to Ax = b? But then, we could repeat the same argument and use an
n/4-by-n/4 node discretization, and so on and so forth.

�is idea gives rise to a preconditioner calledmulti-grid that is incredible at solving
Poisson’s equations. Using a multi-grid strategy allows us to solve Ax = b in time O(n2

)

where the system has size n2
× n2. �is is a linear time algorithm!6 6 Demmel’s textbook: Applied Numerical

Linear Algebra has a nice treatment of this
algorithm.
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