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�e notes here arise from Saad, Iterative
Methods, 2nd edition §6.72; Gutknecht,
A General Framework for Recursions for
Krylov Space Solvers, ETH SAM report
2005-09, ftp://ftp.sam.math.ethz.ch/pub/
sam-reports/reports/reports2005/2005-09.

pdf; and my own notes from working with
Gene Golub.

One of the most wonderful and surprising connections in the �eld of matrix com-
putations is the elegant interplay between matrices and orthogonal polynomials. �ese
relationships lead to magni�cently simple insights into complicated methods. In this lec-
ture we shall unshroud some of these connections. However, the �eld is so deep. Probably
the best textbook on the topic was written by Purdue’s ownWalter Gautschi. It is tersely
titled: “Orthogonal Polynomials.”

1 what are orthogonal polynomials?

For the purposes of this lecture, a polynomial is a univariate function:1 1 Multivariate generalizations exist, but we
won’t need them.

p(t) =
n
∑
i=0

p i t i .

For example:
p(t) = 1

2
t2 − 1

2

q(t) = 5
2
t3 − 3

2
t.

�e degree of a polynomial is the power of the largest term. In the generic polynomial
de�nition, the degree is n. For the examples of p and q, the degrees are 2 and 3 respectively.
A polynomial of degree 0 is a constant.

We call two polynomials orthogonal if:

∫ 1

−1
p(t)q(t) dt = 0.

�is is a type of continuous analog of two vectors:

vTu =
n
∑
i=1

v iu i = 0.

EXAMPLE 1 �e two polynomials p and q given above are orthogonal.

∫ 1

−1
p(t)q(t) dt = ∫ 1

−1
1
2
(t2 − 1)1

2
(5t3 − 3t) dt

=
1
4 ∫

1

−1
5t5 − 5t3 − 3t3 + 3t dt

=
1
4 ∫

1

−1
5t5 − 8t3 + 3t dt.

All of these terms are odd functions, and they are integrated over a symmetric region, hence
the result is 0.

More generally, we can consider polynomials that are orthogonal with respect to

an arbitrary interval ∫ b

a
p(t)q(t) dt

a weighted integral ∫ b

a
p(t)q(t) dw(t)

a discrete weight ∫ b

a
p(t)q(t) dw(t) =

n
∑
i=1

p(λ i)q(λ i)w i

If two polynomials are orthogonal with respect to an integral ∫ b
a dw(t), then we’ll

o�en call this themeasure that they are orthogonal with respect to.
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SEQUENCES AND FAMILIES OF ORTHOGONAL POLYNOMIALS
We are o�en concerned with a sequence or family of orthogonal polynomials. We

will index these by the degree of a polynomial, so that we have the sequence in order
of increasing degree. Let pk(t) be the polynomial of degree k. By convention, we take
p−1(t) = 0 and p0(t) = c for some constant.

�us, we have the following sequence of orthogonal polynomials that are orthogonal
with respect to ∫ 1

−1 dt:
p−1(t) = 0
p0(t) = 1
p1(t) = t
p2(t) = 1

2 (3t
2
− 1)

p3(t) = 1
2 (5t

3
− t)

p4(t) = 1
8 (35t

4
− 30t2 + 3)

�is sequence is called the Legendre polynomials. Other popular families are:

Family Measure

Legendre ∫ 1
−1 dt

Laguarre ∫∞0 e−t dt
Hermite ∫∞−∞ e−t

2
dt

Chebyshev (1st kind) ∫ 1
−1

1√
1−t2 dt

Chebyshev (2nd kind) ∫ 1
−1

√
1 − t2 dt

Jacobi ∫ 1
−1(1 − t)

α(1 + t)β dt
Gegenbauer ∫ 1

−1(1 − t
2)α−1/2 dt

Note that these can be scaled and shi�ed to arbitrary intervals [a, b] too.

ORTHONORMAL POLYNOMIALS
Yes, there are orthonormal polynomials too! Checkout Gautschi’s book for more on

the relationship. If ∫ b
a dw(t) is the measure, the idea is that we need ∫ b

a p(t)2 dw(t) = 1
in order to get orthonormal polynomials.

2 the three term recurrence & tridiagonal matrices

�e following fact, which we will not prove, is profound:

THEOREM 2 Any sequence of orthogonal polynomials of increasing degree satis�es a three-
term recurrence and any three-term recurrence de�nes a sequence of orthogonal polynomials.

EXAMPLE 3 Consider the Legendre polynomials (described above). �ey satisfy:

pk+1(t) =
2k + 1
k + 1

tpk(t) −
k

k + 1
pk−1(t).

For instance,
p2(t) =

2 + 1
1 + 1

t t
´¸¶
p1(t)

−
1

1 + 1
1

´¸¶
p0(t)

.

�e general form of the three-term recurrence is:2 2 In the notes I’m writing this from, µk is ρk ,
so beware of future typos.

pk+1(t) = µk(pk(t) − γk tpk(t)) + ηk pk−1(t),

where the constants µk , γk , ηk may depend on k. What this recurrence means is that if we
have any sequences of numbers µk , γk , ηk , then they give rise to a set of polynomials that
is orthogonal with respect to some measure.
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FROM A THREE-TERM RECURRENCE TO A TRIDIAGONAL MATRIX
It’s this three term recurrence that brings us back to matrix computations, and speci�-

call tridiagonal matrices. Consider the Legendre family. Another way to write the recur-
rence is:

p−1(t) = 0 p0(t) = 1 p1(t) = t (k + 1)pk+1(t) = (2k + 1)tpk(t) − kpk−1(t).

�is recurrence forms a matrix:
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
−t 1
1 −3t 2
0 ⋱ ⋱ ⋱

k −(2k + 1)t (k + 1)
⋱ ⋱ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
tridiagonalT

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p0(t)
p1(t)
p2(t)
⋮

pk+1(t)
⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
⋮

0
⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�us, for instance, we can evaluate a sequence of orthogonal polynomials at a point t by
constructing T(t) and solving:

T(t)p = e1 .
Consequently, any tridiagonal matrix corresponds to a set of orthogonal polynomials.

�ere’s a Matlab demo of this in the orthopolys.m function!
�ere are additional relationships with a matrix called the Jacobi matrix:

J =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

α1 1
β1 α2 1
0 ⋱ ⋱ ⋱0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

but you’ll need to read more about that in Gautschi’s book.

3 polynomials and matrices

Note that if we have a univariate polynomial p(t) = ∑n
i=0 p i t i , then we can evaluate

that polynomial with a squarematrix argument:

p(A) =
n
∑
i=0

p iAi .

4 polynomials and iterative methods

First, let us introduce the idea of using polynomials and iterative methods. �is has
been a homework or examproblem in the past, so it’s worth understanding the details! Con-
sider aKrylov subspacemethod.�e kth iterate xk is inKk(A, b) = span{b,Ab, . . . ,Ak−1b}.
�is means that there is some polynomial such that:3 3 �is is the detail that you should work out!

xk = sk−1(A)b.

Now, if xk is determined by a polynomial sk−1(t) of degree k − 1, this means the residual
at the kth step is determined by a polynomial of degree k:

rk = b − Axk = b − Ask−1(A)b = (I − Ask−1(A))b. �us rk = pk(A)b

where the polynomial pk(t) = 1 − tsk−1(t) has degree k.
We call these two polynomials:

sk(t) the solution polynomial
pk(t) the residual polynomial.

It turns out that the residual polynomial already must have some special structure!
Note that pk(t) is de�ned to be equal to 1 − tsk−1(t). �us, pk(0) = 1. So any residual
polynomial must evaluate to 1 at the value t = 0. As a matrix statement, this means:
pk(0)b = b.
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5 orthogonal polynomials and iterative methods

�us far, we haven’t run into orthogonal polynomials yet. But let’s design an iterative
method with a fairly natural property using orthogonal polynomials.

Design goal We want the kth residual from the iterative method to be orthogonal to all
previous residuals. Or more formally, rTk r j = 0 for j < k. �is goal is equivalent to the idea
that our residual should always include new information at each step and should never
include information we could have factored out.

Orthogonal polynomials will help us achieve this goal!

Let’s state what we have:

rk = b − Axk = pk(A)b.

We want:
rTk r j = bT pk(A)T p j(A)b = 0.

�us, if we create an orthogonal polynomial pk(t) where pk(0) = 1 and

∫ pk(t)p j(t) dw(t) = (rk)Tr j ,

we will implicitly create an iterative method where the residuals are orthogonal.4 4 Take a moment to understand what is
going on here, as it’s a key step. We are
�rst noting that rk can be expressed as a
polynomial in A. We are now saying, let’s
control that polynomial to achieve our goal!
But we’ll have to obey some constraints to
make it work.

�e three term recurrence helps us do this!

Recall:
pk+1(t) = µk(pk(t) − γk tpk(t)) + ηk pk−1(t).

So if we can determine µk , γk , ηk from our constraints, then we’ll be able to �gure out
what the next residual polynomial is.

Let’s enumerate our constraints:

(i)pk+1(0) = 1

(ii)rk+1 = pk+1(A)b = µk(rk − γkArk) + ηkrk−1
(iii)(rk+1)Tr j = 0, j < k.

Constraint (i) implies:

1 = pk+1(0) = µk + ηk ⇒ ηk = 1 − µk .

�us, we now have a revised constraint (ii):

rk+1 = pk+1(A)b = µk(rk − γkArk) + (1 − µk)rk−1 .

If we apply constraint (iii) with j = k, we have:

0 = (rk)Trk+1 = µk((rk)Trk − γk(rk)TArk) + (1 − µk)(rk)Trk−1

or

γk =
rTk rk
rTk Ark

.

Finally, using constraint (iii) with j = k − 1, we can solve for5 5 Check for an error here... and this simpli-
�es more, see Saad

µk =
rTk−1rk−1

rTk−1rk−1 + γkrTk−1Ark .

�is lets us compute rk+1

4



GETTING THE SOLUTION POLYNOMIAL
�us far, we have the residual polynomial rk = pk(A)b. We do, however, need to

recreate the solution too! To do so, we note that

sk(t) =
1 − pk+1(t)

t
=
1 − µk(pk(t) − γk tpk(t)) − (1 − µk)pk−1(t)

t
.

Now we add and subtract µk/t in order to rewrite this as:

sk(t) = µk [
1 − pk(t)

t
− γk pk(t)] − (1 − µk)

1 − pk−1(t)
t

= µk(sk−1(t) − γk pk(t)) − (1 − µk)sk−2(t).

Hence, we have:
xk+1 = µk(xk − γkrk) − (1 − µk)xk−1 .

6 a polynomial form of conjugate gradient

In a small surprise, we’ve arrived at a new form of the conjugate gradient algorithm!
�e iterates generated by this method are mathematically equivalent to those generated by
CG!�e way to prove this is to show that the residuals constructed in CG automatically
satisfy the same property and live in the same subspace, hence, they must be the same.
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