We now illuminate some of the relationships between matrix computations and linear algebra.

Why is this stuff important? The important bit is the concept of the rank of a matrix. This gives the dimension of the vector-space associated with the matrix. So it's worth reviewing up to the point of rank.

Sets of vectors

Linearly independent A set of vectors $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$ in \mathbb{R}^{n} is called linearly independent if

$$
\sum_{i=1}^{k} \alpha_{i} \mathbf{x}_{i}=0
$$

imples $\alpha_{i}=0$ all i.
Examples The vectors $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{x}_{2}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ are linearly independent. This can be verified by showing that the system of equations:

$$
\alpha_{1}+2 \alpha_{2}=0 \text { and } 2 \alpha_{1}+3 \alpha_{2}=0
$$

only has the solution $\alpha_{1}=\alpha_{2}=0$. However, the vectors $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{x}_{2}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$ are not linearly independent because $2 \mathbf{x}_{1}-\mathbf{x}_{2}=0$.

As a matrix The property of being linearly independent is easy to state as a matrix. Suppose that \boldsymbol{X} is an $n \times k$ matrix where \mathbf{x}_{i} is the i th column:

$$
\boldsymbol{X}=\left[\begin{array}{lll}
\mathbf{x}_{1} & \cdots & \mathbf{x}_{k}
\end{array}\right] .
$$

Then the set of vectors is linearly independent if $\boldsymbol{X} \mathbf{a}=0$ implies that $\mathbf{a}=0$.
Span (not spam) The span of a set of vectors is the set of all linear combinations.

$$
\operatorname{span}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)=\left\{\sum_{i=1}^{k} \alpha_{i} \mathbf{x}_{i}, \alpha_{i} \in \mathbb{R}\right\}
$$

Subspaces

Defining a vector spaces is best left to Wikipedia:

- Vector space

Suffice it to say that that the set \mathbb{R}^{n} is a vector-space with the field of real-numbers as scalars.

A subset $V \subset \mathbb{R}^{n}$ is called a subspace if it also satisfies the properties of being a vector-space itself.

Example Let $V=\{\alpha \mathbf{x}, \alpha \in R R\}$ for some vector $\mathbf{x} \in \mathbb{R}^{n}$. Then V is a subspace of \mathbb{R}^{n}.

Spans and subspaces The example we just saw shows that $\operatorname{span}(\mathbf{x})$, the span of a single vector, is a subspace. This is true in general: $\operatorname{span}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)$ is a subspace.
Linearly independent spans Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ be linearly independent. Then for $\mathbf{b} \in \operatorname{span}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)$, there exists a unique set of α_{i} 's such that $\mathbf{b}=\sum_{i=1}^{k} \alpha_{i} \mathbf{x}_{k}$. As a matrix, this is saying that the system of equations:

$$
\mathbf{b}=\boldsymbol{X} \mathbf{a}
$$

has a unique solution a where

$$
\boldsymbol{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right] .
$$

Subspaces to bases and dimensions For any subspace $V \subseteq \mathbb{R}^{n}$, we can find always find a set S of linearly independent vectors $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$ such that $V=\operatorname{span}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)$. We call any such set a basis for the subspace V.

IMPORTANT Any basis for a subspace always has the same number of vectors. Thus, the number of vectors in a subspace is a unique property of a vector space and is the dimension of the vector-space.

This ends our discussion of subspaces. Now we'll see how we can use subspaces to discuss matrices

Matrices to subspaces

Given a matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]$.
Range The range of a matrix is the subspace:

$$
\operatorname{range}(\boldsymbol{A})=\left\{\mathbf{y} \in \mathbb{R}^{m}: y=\boldsymbol{A} \mathbf{x} \text { for all } \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

Note that

$$
\operatorname{range}(\boldsymbol{A})=\operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}
$$

So the range is just one particular span of a set of vectors.

Rank

Perhaps the most important thing in these notes is the concept of rank. At this point, rank is simple.

$$
\operatorname{rank}(\boldsymbol{A})=\operatorname{dim}(\operatorname{range}(\boldsymbol{A}))
$$

That is, the rank of \boldsymbol{A} is the dimension of the subspace given by the range of \boldsymbol{A}. This property is fundamentally important.

For instance, if $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ with $m \geq n$ and $\operatorname{rank}(\boldsymbol{A})=n$, then we know that

$$
\boldsymbol{A}=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]
$$

has a set of linearly independent column vectors!
Example Here's where we can use some of our matrix algebra to prove a statement.
Let \boldsymbol{P} be an $n \times n$ permutation matrix. Show that $\operatorname{rank}(\boldsymbol{A P})=\operatorname{rank}(\boldsymbol{A})$.

Proof Sketch A permutation matrix just reorders the columns of the matrix. This won't change anything in the range of \boldsymbol{A}. So the set of vectors in the range of \boldsymbol{A} won't change. Thus, the dimension of that vector space won't change.
Key question How do we compute rank?
Answer Use a matrix decomposition!

Useful matrix decompositions

Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ be a matrix. The following are matrix decompositions exist for any matrix:

1. $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{R}$ where \boldsymbol{Q} is $m \times m$ and orthogonal, and \boldsymbol{R} is $m \times n$ and uppertriangular.
2. $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$ where \boldsymbol{U} is $m \times m$ and orthogonal, \boldsymbol{V} is $n \times n$ and orthogonal, and $\boldsymbol{\Sigma}$ is $m \times n$ and diagonal, with diagonal entries $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$. (That is, sorted in decreasing order and non-negative.)
3. $\boldsymbol{A}=\boldsymbol{P} \boldsymbol{L} \boldsymbol{U} \boldsymbol{Q}$ where \boldsymbol{P} and \boldsymbol{Q} are permutation matrices and \boldsymbol{L} and \boldsymbol{U} are lower and upper triangular.

These decompositions expose the rank of a matrix in various ways. For instance, the number of entries on the diagonal of $\boldsymbol{\Sigma}$ that are non-zero is equal to the rank of the matrix.

