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We now illuminate some of the relationships between matrix computations and
linear algebra.

Why is this stuff important? The important bit is the concept of the rank of a
matrix. This gives the dimension of the vector-space associated with the matrix.
So it’s worth reviewing up to the point of rank.

Sets of vectors

Linearly independent A set of vectors {x1, . . . ,xk} in Rn is called linearly
independent if

k∑
i=1

αixi = 0

imples αi = 0 all i.

Examples The vectors x1 =
[
1
2

]
and x2 =

[
2
3

]
are linearly independent. This can

be verified by showing that the system of equations:

α1 + 2α2 = 0 and 2α1 + 3α2 = 0

only has the solution α1 = α2 = 0. However, the vectors x1 =
[
1
2

]
and x2 =

[
2
4

]
are not linearly independent because 2x1 − x2 = 0.

As a matrix The property of being linearly independent is easy to state as a
matrix. Suppose that X is an n× k matrix where xi is the ith column:

X =
[
x1 · · · xk

]
.

Then the set of vectors is linearly independent if Xa = 0 implies that a = 0.

Span (not spam) The span of a set of vectors is the set of all linear combinations.

span(x1, . . . ,xk) = {
k∑

i=1
αixi, αi ∈ R}.

Subspaces

Defining a vector spaces is best left to Wikipedia:

• Vector space

Suffice it to say that that the set Rn is a vector-space with the field of real-numbers
as scalars.

A subset V ⊂ Rn is called a subspace if it also satisfies the properties of being a
vector-space itself.

Example Let V = {αx, α ∈ RR} for some vector x ∈ Rn. Then V is a subspace
of Rn.
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Spans and subspaces The example we just saw shows that span(x), the span
of a single vector, is a subspace. This is true in general: span(x1, . . . ,xk) is a
subspace.

Linearly independent spans Let x1, . . . ,xk be linearly independent. Then for
b ∈ span(x1, . . . ,xk), there exists a unique set of αi’s such that b =

∑k
i=1 αixk.

As a matrix, this is saying that the system of equations:

b = Xa

has a unique solution a where

X =
[
x1, . . . ,xk

]
.

Subspaces to bases and dimensions For any subspace V ⊆ Rn, we can find
always find a set S of linearly independent vectors S = {x1, . . . ,xk} such that
V = span(x1, . . . ,xk). We call any such set a basis for the subspace V .

IMPORTANT Any basis for a subspace always has the same number of vectors.
Thus, the number of vectors in a subspace is a unique property of a vector space
and is the dimension of the vector-space.

This ends our discussion of subspaces. Now we’ll see how we can use subspaces to
discuss matrices

Matrices to subspaces

Given a matrix A ∈ Rm×n =
[
a1, . . . ,an

]
.

Range The range of a matrix is the subspace:

range(A) = {y ∈ Rm : y = Ax for all x ∈ Rn}.

Note that
range(A) = span{a1, . . . ,an}.

So the range is just one particular span of a set of vectors.

Rank

Perhaps the most important thing in these notes is the concept of rank. At this
point, rank is simple.

rank(A) = dim(range(A))

That is, the rank of A is the dimension of the subspace given by the range of A.
This property is fundamentally important.

For instance, if A ∈ Rm×n with m ≥ n and rank(A) = n, then we know that

A =
[
a1, . . . ,an

]
has a set of linearly independent column vectors!

Example Here’s where we can use some of our matrix algebra to prove a statement.
Let P be an n× n permutation matrix. Show that rank(AP ) = rank(A).
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Proof Sketch A permutation matrix just reorders the columns of the matrix. This
won’t change anything in the range of A. So the set of vectors in the range of A
won’t change. Thus, the dimension of that vector space won’t change.

Key question How do we compute rank?

Answer Use a matrix decomposition!

Useful matrix decompositions

Let A ∈ Rm×n be a matrix. The following are matrix decompositions exist for
any matrix:

1. A = QR where Q is m ×m and orthogonal, and R is m × n and upper-
triangular.

2. A = UΣV T where U is m×m and orthogonal, V is n×n and orthogonal,
and Σ is m× n and diagonal, with diagonal entries σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.
(That is, sorted in decreasing order and non-negative.)

3. A = P LUQ where P and Q are permutation matrices and L and U are
lower and upper triangular.

These decompositions expose the rank of a matrix in various ways. For instance,
the number of entries on the diagonal of Σ that are non-zero is equal to the rank
of the matrix.
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