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1 krylov subspace approaches to solve linear
systems.

1.1 MOTIVATION
Recall the first method we saw to solve a linear system of equations:

Ax = b
where we conceptually multiplied by the inverse

(A)−1 ≈ I + (I − A) + (I − A)2 + . . .
to get the algorithm:

x(k) =
k

∑
j=0
(I − A) jb.

Let’s call this the Neumann-series algorithm for linear systems.
This converged as long as ρ(I − A) < 1. We could modify it so that it would work

for any symmetric positive definite problem by incorporating a scaling that gave us the
Richardson method.

The inspiration for our next set of methods arises from a set of subtle insights about
this original method. This will yield a set of new perspectives that we will use to generate
a family of solvers for linear systems called Krylov methods. The following derivations are largely pro-

cedural. Essentially, we are seeking to find
generalizations of some easy ideas that per-
mit us to find new perspectives. We will
then be able to use these new perspectives
to identify particular methods. To study the
methods, then, we’ll take advantage of the
perspective we used to derive it! This type
of analysis can be subtle. So please do ask
questions if you have trouble understanding
why we are looking at something.

First, note that:

x(k) = [b (I − A)b . . . (I − A)kb] e.
That is, we can represent the kth iteration as a (simple!) linear combination of the basis
vectors

(b, (I − A)b, . . . , (I − A)kb.
This means that, for some vector b, we can write:

x(k) = [b Ab A2b . . .Akb] c.
Let’s work this out, which will give us a lead on our next perspective.

LEMMA 1 Consider the kth iteration from a Neumann-series based approch, where x(k) =
∑k

j=0(I − A) jb. Then we can write x(k) = ∑k
j=0 c jA

jb for some coefficients c0 , . . . , ck .

Proof The proof follows from the binomial expansion:

(I − A)kb =
k

∑
j=0
(k
j
)(−A) j .

But a more useful realization is as follows:

(I − A)kb = polynomial(A)b.
In which case, the theorem is just giving a change of basis between polynomials in powers
of (1 − x) and x.1 ∎

1 This perspective needs more elaboration
here. See the class notes.

Just to be clear, let’s state the other result as well.

COROLLARY 2 Consider the kth iteration from a Neumann-series based approch, where
x(k) = ∑k

j=0(I − A) jb, then x(k) = p(A)b for some polynomial p(x) = ∑k
j=0 c jx j .

—TODO –More on subspace view vs. polynoial view.
The goal of our next set of methods is to seek better vectors in these subspaces than

the choice of the Neumann series.
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1.2 THE KRYLOV SUBSPACE
The Krylov subspace is the set of vectors

Kk(A, b) = span(b,Ab,A2b, . . .Akb).

Hence, the Neumann method just uses a specific element ofKk(A, b) to approximation
the solution of the linear system.

There is nothing “magic’ ’ about the Krylov subspace. Although, it does arise surpris-
ingly often and in a number of forms.

Let’s start with a simple theorem (with a slightly magic proof).

THEOREM 3 Suppose that Akb ∈ Kk−1(A, b). Then the solution of Ax = b is contained within
Kk−1(A, b) as well.

Proof Let X be any basis forKk−1(A, b). Then we have that Akb = Xy for some vector yk .
Consequently, we also have that Ak+1b = Xyk+1. Hence, for any set of powers beyond k,
they exist in the basis X. The simplest way to prove this is to appeal to a slightly fancy result
involving the Cayley-Hamilton theorem. 2 Note that, by the Cayley-Hamilton theorem, 2 The Cayley-HamiltonTheorem states

that there is a degree n polynomial q(x)
such that q(A) = 0. (And also that
q(x) =∏n

i=1(x − λ i) where λ i are the eigen-
values, but that isn’t relevant.) Consider that
q(A)A−1 = 0 too, but q(A) = cnAn

+ . . . c0I
so q(A)A−1 = cnAn−1

+ c0A−1 = 0, which
we can solve for A−1 to get a degree n − 1
polynomial for the inverse.

there is a polynomial p(A) such that p(A) = A−1. Hence, we by the assumptions of the
theorem, we have that p(A)b is in the subspace too. ∎

The reason this theorem is nice is because is says we never need to be concerned about
singular X. If X is singular, then we have solved our linear system!

1.3 THE PROBLEM WITH THE KRYLOV SUBSPACE
When we want to work with the Krylov subspace, we need a basis for it. The simple

choice is
X = [b Ab A2b . . .Akb]

as that is how the subspace is defined. The problem with this basis, however, is that X
becomes very ill-conditioned as k gets large.

Let’s see this for a diagonal linear system! Suppose that

An =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1/2

1/4
1/8

⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where An is n-by-n.
Then suppose that b = e, so we get the vector of all ones. We have that

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1
1 1/2 1/4 . . . 1/(2k)
1 1/4 1/16 . . . 1/(4k)
⋯1 1/(2n − 1) 1/(2n − 1)2 . . . 1/(2n − 1)k

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that Ak − 1b ≈ Akb and so the matrix is almost singular.
A good way to characterize this is via the ill-conditioning of the matrix.
— TODO – Put the picture of the ill-conditioning.

1.4 A BETTER BASIS FOR THE SUBSPACE
What we’d ideally like is an orthogonal basis for Kk(A, b). We can get this via the

Arnoldi process.
— TODO – Derive Arnoldi as: AVk = Vk+1 Tk+1
— TODO – Proof that the Vk spans KK
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