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The Matrix Powers Subspace, aka the Krylov Subspace Learning objectives

leftmirgin=* Recognize that the Neu-
mann method for solving
Ax = b can be explained
in terms of subspaces and
polynomials.

leftmiirgiin=* Understand that the
Krylov subspace is a sub-
space of matrix powers:
span(b, Ab, A2b, . . .)

leftmiiirgiiin=* Recognize that this view
suggests a more powerful
approach to approximately
solve a linear system of
equations by searching
the entire matrix power
subspace

1 motivation

The following derivations are largely pro-
cedural. Essentially, we are seeking to find
generalizations of some easy ideas that per-
mit us to find new perspectives. We will
then be able to use these new perspectives
to identify particular methods. To study the
methods, then, we’ll take advantage of the
perspective we used to derive it! This type
of analysis can be subtle. So please do ask
questions if you have trouble understanding
why we are looking at something.

Recall the first method we saw to solve a linear system of equations:

Ax = b

where we conceptually multiplied by the inverse

(A)−1 ≈ I + (I − A) + (I − A)2 + . . .

to get the algorithm:

x(k) =
k

∑
j=0
(I − A) jb.

Let’s call this the Neumann-series algorithm for linear systems.
This converged as long as ρ(I − A) < 1. We could modify it so that it would work

for any symmetric positive definite problem by incorporating a scaling that gave us the
Richardson method.

The inspiration for our next set of methods arises from a set of subtle insights about
this original method. This will yield a set of new perspectives that we will use to generate
a family of solvers for linear systems called Krylov methods. In keeping with the idea
of introducing names that refer to ideas instead of people, we also call this the power
subspace methods.1

1 The ideas behind these methods were
independently described around the same
time by both Krylov and Lanczos.

First, note that:

x(k) = [b (I − A)b . . . (I − A)kb] e.

That is, we can represent the kth iteration as a (simple!) linear combination of the basis
vectors

(b, (I − A)b, . . . , (I − A)kb.
This means that, for some vector c, we can write:

x(k) = [b Ab A2b . . .Akb] c.

Let’s work this out, which will give us a lead on our next perspective.

LEMMA 1 Consider the kth iteration from a Neumann-series based approach, where x(k) =
∑

k
j=0(I − A) jb. Then we can write x(k) = ∑k

j=0 c jA
jb for some coefficients c0 , . . . , ck .

Proof The proof follows from the binomial expansion:

(I − A)kb =
k

∑
j=0
(
k
j
)(−A) jb.

But a more useful realization is as follows:

(I − A)kb = polynomial(A)b.

In which case, the theorem is just giving a change of basis between polynomials in powers
of (1 − x) and x.2 ∎

2 See the discussion sec:poly-basis-intro.

Just to be clear, let’s state the other result as well.

COROLLARY 2 Consider the kth iteration from a Neumann-series based approch, where
x(k) = ∑k

j=0(I − A) jb, then x(k) = p(A)b for some polynomial p(x) = ∑k
j=0 c jx j .
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1.1 THE BASIS FOR A POLYNOMIAL
What is a polynomial?3 In our setting, we are only concerned with univariate polyno- 3 Much more on polynomials will be dis-

cussed in a future chapter on Orthogonal
Polynomials, chap:orthopoly. Read more
there now if you wish.

mials. Consequently, a polynomial is any function of the form

p(x) ∶ R→ R where p(x) = c0 + c1x + c2x2 +⋯ckxk .

The degree of the polynomial is the highest power. So p(x) = 5 + 2x + 3x2 is a degree 3
polynomial. The basis for a polynomial has to do with how we represent p(x) as a sum of
functions of x. For instance, we can introduce

f0(x) = 1, f1(x) = (1 − x), f2(x) = (1 − x)2∗

p(x) = 3 f2(x) − 8 f1(x) + 0 f0(x).

The set of functions we use to write a polynomial is called the polynomial basis. Note that
the actual function p(x) is independent of the basis in which we write the functions.

Hence, what the previous lemma shows is simply that

p(x) =
k

∑
j=0

f j(x)
´¹¸¹¶
=(1−x) j

=
k

∑
j=0

s j дj(x)
´¹¹¸¹¹¶
=(x j)

.

In this case, we need to produce coefficients s j that correspond with the power, or mono-
mial basis, дj(x) = x j .

1.2 SUBSPACES AND POLYNOMIALS

Consider xk from the Neumann series

Subspaces
The subspace view is that

x(k) = [b Ab A2b ⋯ Ak−1b] c

to indicate that x(k) is a specific linear
combination of the basis vectors from the

matrix powers subspace

[b Ab A2b ⋯ Ak−1b] .

Polynomials
The polynomial view is that

x(k) = b + (I − A)b+
(I − A)2b +⋯+
(I − A)k−1b

= poly(A)b

where poly(A) ≈ A−1.
s
The key thing in both perspectives is that we can choose c to find a different element of

the matrix power subspace or a different polynomial to find a better approximation of A−1.
And also that these are the same idea!

The goal of our next set of methods, the

Krylov subspace methods

is to seek better vectors in these subspaces than the choice of the Neumann series. Equiva-
lently, we can think of these as finding a better polynomial to represent A−1.

2 the matrix powers subspace

The matrix powers subspace is the set of vectors

Kk(A, b) = span(b,Ab,A2b, . . .Akb).

This is typically called the Krylov subspace. Hence, the Neumann method just uses a
specific element ofKk(A, b) to approximation the solution of the linear system.

There is nothing “magic’ ’ about the Krylov subspace. Although, it does arise surpris-
ingly often and in a number of forms.

Let’s start with a simple theorem (with a slightly magic proof).
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THEOREM 3 Let A be full rank. Suppose that Akb ∈ Kk−1(A, b). Then the solution of Ax = b
is contained withinKk−1(A, b) as well.

Proof Let X be any basis forKk−1(A, b). Then we have that Akb = Xy for some vector yk .
Consequently, we also have that Ak+1b = Xyk+1. Hence, for any set of powers beyond k,
they exist in the basis X. The simplest way to prove this is to appeal to a slightly fancy result
involving the Cayley-Hamilton theorem. 4 Note that, by the Cayley-Hamilton theorem, 4 The Cayley-HamiltonTheorem states

that there is a degree n polynomial q(x)
such that q(A) = 0. (And also that
q(x) =∏n

i=1(x − λ i) where λ i are the eigen-
values, but that isn’t relevant.) Consider that
q(A)A−1 = 0 too, but q(A) = cnAn

+ . . . c0I
so q(A)A−1 = cnAn−1

+ c0A−1 = 0, which
we can solve for A−1 to get a degree n − 1
polynomial for the inverse.

there is a degree n polynomial p(A) such that p(A) = A−1. Hence, we by the assumptions
of the theorem, we have that p(A)b is in the subspace too. ∎

The reason this theorem is nice is because is says we never need to be concerned about
singular X. If X is singular, then we have solved our linear system!

2.1 THE PROBLEM WITH THE KRYLOV SUBSPACE
When we want to work with the Krylov subspace, we need a basis for it. The simple

choice is
X = [b Ab A2b . . .Akb]

as that is how the subspace is defined. The problem with this basis, however, is that X
becomes very ill-conditioned as k gets large.

Let’s see this for a diagonal linear system! Suppose that

An =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1/2

1/4
1/8

⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where An is n-by-n.
Then suppose that b = e, so we get the vector of all ones. We have that

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 . . . 1
1 1/2 1/4 . . . 1/(2k)
1 1/4 1/16 . . . 1/(4k)
⋯1 1/(2n − 1) 1/(2n − 1)2 . . . 1/(2n − 1)k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Note that Ak−1b ≈ Akb and so the matrix is almost singular.
A good way to characterize this is via the ill-conditioning of the matrix.
Let Xk be the

A BETTER BASIS FOR THE SUBSPACE
What we’d ideally like is an orthogonal basis for Kk(A, b). We can get this via the

Arnoldi process.
— TODO – Derive Arnoldi as: AVk = Vk+1 Tk+1
— TODO – Proof that the Vk spans KK
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