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1 elimination methods for linear systems

Lecture 11: Finite methods for solving linear systems of equations.
Thus far, we’ve seen methods that solve Ax = b via a sequence of vector changes. These

methods have worked by updating x(k) to x(k+1). At no point did they consider changing
the system Ax = b into another system By = d, where y is somehow easier to find than x
and we can compute x from y in a simple fashion.

The next class of methods we will look at will do exactly this! From Ax = b, we will
produce a sequence of systems that get progressively smaller by eliminating variables. The
methods go by a variety of names: elimination, Gaussian elimination, LU decomposition,
Cholesky factorization, and even more names including the Schur complement. However,
the key idea is almost always the same.

1.1 VARIABLE ELIMINATION
Consider the case where we are solving a system Ax = b then we can write this out

and highlight the first row as follows:1 1 Of course, the curious will wonder what is
special about the first row. As is common,
there is nothing special about the first row
and this could be done for any row. We’ll
return to this idea later.

A = [α cT
d R ] b = [βf ] .

Let the solution correspond to the elements

x = [γy]

so that
αγ + cTy = β.

Then the idea behind all of the elmination methods is that, if we are given y by some type
of oracle, we can compute γ from y

γ(y) = 1
α
(β − cTy) .

This is neat, it says that if you had all by one solution of your system, it’s easy to find
missing element. 2 2 Careful readers will note that we need

α /= 0 for this idea to work.We aren’t quite done, however, because this hasn’t simplified or changed or system at
all. To do that, note that the remaining equations give the expression

γd + Ry = f .

This expression involves γ and y. But we have γ as a function of y and so let’s just substitute
that in. The result is an expression purely in terms of y

γ(y)d + Ry = 1
α
(β − cTy)d + Ry = f .

By re-arranging the equations, we arrive at the following linear system:

(R −
1
α
dcT)y = f − β

α
d.
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A 4x4 example. Suppose we have:
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 −1 −4 −1
−1 −5 −5 −2
4 5 2 0
−2 −2 −1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4
4
−5
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

then

(R −
1
α
dcT)y =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−4.5 −3 −1.5
3 −6 −2
−1 3 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

y =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

2
3
−2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

where y =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1
−14/3
11

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and γ = 7/3 so x =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

7/3
−1
−14/3
11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

If Awas n × n, then this method takes the system

(A, b) to (R −
1
α
dcT , f − β

α
d)

where this new system is (n − 1)× (n − 1). Hence, we arrive at an easier or smaller system
to solve! To solve it, we can apply the same idea again until we get down to a 1 × 1 system.
This algorithm is easy to implement on a computer that supports recursion.

function elimination_solve(A::Matrix, b::Vector)

m,n = size(A)

@assert(m==n, "the system is not square")

@assert(n==length(b), "vector b has the wrong length")

if n==1

return [b[1]/A[1]]

else

R = A[2:end,2:end]

c = A[1,2:end]

d = A[2:end,1]

alpha = A[1,1]

y = elimination_solve(R-d*c’/alpha, b[2:end]-b[1]/alpha*d)

gamma = (b[1] - c’*y)/alpha

return pushfirst!(y,gamma)

end

end

This idea is called variable elimination. We elminate the variable γ from the system of
equation Ax = b by solving for its expression and them substituting that solution into the
rest of the equations.

Note that if A is symmetric, then d = c and hence R − 1
αdc

T = R − 1
α cc

T is symmetric
as well.

In fact, if A is symmetric positive definite, then zTAz > 0 for any z. We can show that
D − 1

α cc
T is also symmetric positive definite too! To do so, we will show that gTRg −

1
α (vc

Tg)2 > 0 for any g. We consider using a specially chosen vector z applied to the
equation for A

zTAz = [ρg]
T

[
α cT
c R ] [

ρ
g] = αρ

2
+ 2ρcTg + gTDg.

At the moment, ρ is still arbitrary. We can choose it to be anything. However, our goal is
to pick ρ such that we learn about gTRg − 1

α (c
Tg)2. To do so, let ρ = −(cTg)/α. Then

αρ2 + 2ρcTg + gTDg = (cTg)2/α − 2(cTg)2/α + gTDg = gTDg − (cTg)2/α > 0
as required.

This means that if we eliminate a variable on a symmetric positive definite system. The
remaining system is still symmeric positive definite.
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1.2 VARIABLE ELIMINATION AS A MATRIX EXPRESSION
The really interesting part about variable elimination is that we can express it as a

matrix expression! The following expression seems like magic. Essentially, by examining
the above equation long enough, we can deduce an expression like the following. It allows

us to express the elimination operation as a matrix itself. Again, let A = [α cT
d R ]. Then

[
1 0
−d/α I]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= L1 [
α cT
d R ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=A

[
1 −cT/α
0 I ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=U 1

= [
α 0
0 R − 1

αdc
T] .

Note that L1 is a non-singular matrix of the form:

L1 = I − ve1 where v1 = 0.

This means that L−11 = I + ve1, which can be verified because L1L−11 = I. Likewise,
U 1 = I − e1uT where u1 = 0. It’s inverse is I + e1uT as well. Using these matrices, we can
transform:

Ax = b→ L1AU 1U−1x = L1b.

If we expand this block-wise, then we get:

[
α 0
0 R − 1

αdc
T] [

γ + 1
α c

Ty
y ] = [

1 0
−d/α I] [

β
f ] ,

which is exactly our reduced system.
Consequently, we can express our entire sequence of reductions as follows:

Ln−1Ln−2⋯L1AU 1U 2⋯U n−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1
0 α2
0 0 . . .

αn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= D

or
A = L−11 L−12 ⋯L

−1
n−1DU−1n−1U n−2⋯U−11 .

It turns out that these elimination matrix L−1i and U−1i have some rather special
properties that allow us to realize this form in an exceedingly simple way. For all i we have
L−1i = (I + vei) with v1 = v2 = . . . = v i = 0 and so

L−1i L−2j = (I + v ieTi )(I + v jeTj ) = I + v ieTi + v jeTj + v ieTi v jeTj = I + v ieTi + v jeTj when i < j.

This enables us to quickly compute these as follows:

function myreduce_all(A::Matrix)

A = copy(A) # save a copy

n = size(A,1)

L = Matrix(1.0I,n,n)

U = Matrix(1.0I,n,n)

d = zeros(n)

for i=1:n-1

alpha = A[i,i]

d[i] = alpha

U[i,i+1:end] = A[i,i+1:end]/alpha

L[i+1:end,i] = A[i+1:end,i]/alpha

A[i+1:end,i+1:end] -= A[i+1:end,i]*A[i,i+1:end]’/alpha

end

d[n] = A[n,n]

return L,U,d

end

L,U,d = myreduce_all(A)

L*Diagonal(d)*U - A
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This is what is most commonly called the LU decomposition of a matrix.
Suppose we start with the system

[
0 1
1 1] [

x
y] = [

5
6] .

This has the solution x = 1, y = 5.
Then if we try the variable elimination approach, our first step is

0x + y = 5

x = 5 − y
0

break!

This scenario involves division by zero because x really is not really a component of that
system!

The solution is easy, if we wish to eliminate x from this equation, we need to use an
equation that includes x.3 In this case, we can simply swap rows 3 This is identical to how in Jacobi and Gauss-

Seidel, if we wished to update the value for
a variable x i , we needed to use an equation
that used the variable x i .[

1 1
0 1] [

y
x] = [

6
5] .

After which we have

x + y = 6→ x = 6 − y

y = 5

which we can quickly solve.
Computers need more structure in order to realize these same things. Pivoting is the

idea they use to reorder the equations.

DEFINITION 1 (Pivoting) Pivoting reorders the equations (rows) of A in a linear system so that
we can compute an LU-decomposition for any non-singular system.

We can always use pivoting to find a variable to eliminate.

THEOREM 2 If A is non-singular, then at each step of an LU factorization, there must be a
variable and equation pair that we can eliminate.

Proof Assume by way of contradiction that we cannot find an equation (row) to eliminate
a variable (column) in the kth step of an LU factorization. After k − 1 steps of an LU
factorization we have

Lk−1Lk−2⋯L1AU 1U 2⋯U k−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d1
d2
⋱

dk−1
R

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

By our assumption, we are in the scenario where there is no equation (row) of R to
eliminate the kth variable. The kth variable is involved in the first column of R. This
means that the first column of R is entirely zero. This implies that R is singular because it
has a column that is entirely zero.

Now, A is non-singular, as are the products

Lk−1Lk−2⋯L1 and U 1U 2⋯U k−1 .

Consequently, the left-hand side is non-singular, which means the right hand side must
be as well. However, our assumption implied that R was singular, which is how we arise at
the contradiction. ∎
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This gives rise to the following algorithm for solving a system of linear equations.

1 function solve1_pivot!(A::Matrix, b::Vector)

2 m,n = size(A)

3 @assert(m==n, "the system is not square")

4 @assert(n==length(b), "vector b has the wrong length")

5 if n==1

6 return [b[1]/A[1]]

7 else

8 # let’s make sure we have an equation

9 # that we can eliminate!

10 alpha = A[1,1]

11 newrow = 1

12 if alpha == 0

13 for j=2:n

14 if A[j,1] != 0

15 newrow = j

16 break

17 end

18 end

19 if newrow == 1

20 error("the system is singular")

21 end

22 end

23 # swap rows 1, and newrow

24 if newrow != 1

25 tmp = A[1,:]

26 A[1,:] .= A[newrow,:]

27 A[newrow,:] .= tmp

28 b[1], b[newrow] = b[newrow], b[1]

29 end

30 D = A[2:end,2:end]

31 c = A[1,2:end]

32 d = A[2:end,1]

33 alpha = A[1,1]

34 y = solve1_pivot!(D-d*c’/alpha, b[2:end]-b[1]/alpha*d)

35 gamma = (b[1] - c’*y)/alpha

36 return pushfirst!(y,gamma)

37 end

38 end

1.3 ON SYMMETRIC MATRICES
Suppose we are able to run the LU decomposition of a matrix with no pivoting. In

other words, suppose that α = A[i,i] is non-zero at each step. In this case, we produce:

A = LDU .

Now, because A is symmetric, we have

A = AT
= (LDU)T = U TDLT .

This strongly hints that L = U T . This result is indeed correct, as can be verified by looking
at the each step of the algorithm on a symmetric A and noting that we preserve symmetry
at each step as shown above. However, in general, we cannot assume that any symmetric
matrix can be decomposed like this without pivoting.

4here is a more general LDLT factorization that can be computed in such cases. 4 T
A simple counter example is: A = [ 0 1

1 1 ].

1.4 THE CHOLESKY DECOMPOSIT ION
The Cholesky decomposition is the LU decomposition, without pivoting, applied to

symmetric positive definite matrix. For a symmetric positive definite matrix, we can show
that pivoting is not required. This is actually a corollary of one of the definitions of what it
means to be a positive definite matrix.

Consequently, for a symmetric positive definite matrix we always have

A = LDLT .
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Moreover, because A is positive definite, we have D i , i > 0. This happens because after each
step of the reduction, the reduced matrix is also positive definite. The diagonal entries of a
positive definite matrix are always positive, and these determine the entries of the diagonal
D. As shown above, after each elimination step, the matrix remains positive definite as
well.

Because D is strictly positive, we can take the square root of each entry and compute

A = LD1/2
(D1/2L)T = FFT or FTF .

This gives the Cholesky routine

""" Compute the Cholesky factorization A = FF’ and return F """

function (A::Matrix)

A = copy(A) # save a copy

n = size(A,1)

F = Matrix(1.0I,n,n)

d = zeros(n)

for i=1:n-1

alpha = A[i,i]

d[i] = sqrt(alpha)

F[i+1:end,i] = A[i+1:end,i]/alpha

A[i+1:end,i+1:end] -= A[i+1:end,i]*A[i,i+1:end]’/alpha

end

d[n] = sqrt(A[n,n])

return F*Diagonal(d), d

end

PD = A’*A

F,d = myreduce_all_cholesky(PD)

F*F’ - A

Compare with the previous LU code to see the subtle differences.
What happens if your matrix is not symmetric positive definite? Then at some point

in the decomposition, you will have α < 0. This is actually one of the fastest ways to test if
a matrix is symmetric positive definite as it avoid all eigenvalue computations.

1.5 A MORE GENERAL PERSPECTIVE ON THIS IDEA.
—TODO – Finish
There is no restriction that the regions have no overlap when we split into two pieces.

Consider:
Ax = b

where x = Cy + Dz for a n × n − 2 full-rank matrix C and a n × n − 1 full-rank matrix D.
We require the matrices C and D be able to express any vector x. 5 5 This can be formalized, but the exact prop-

erty escapes me as I’m writing these notes.
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