1 ELIMINATION METHODS FOR LEAST SQUARES

1.1 THE SIMPLE ELIMINATION SOLVE

We can also use variable elimination for least squares problems. Consider

$$
\text { minimize }\|A \mathbf{x}-\mathbf{b}\|
$$

Partition $\boldsymbol{A}=\left[\begin{array}{ll}\mathbf{a} & \boldsymbol{C}\end{array}\right]$ and $\mathbf{x}=\left[\begin{array}{l}y \\ \mathrm{y}\end{array}\right]$. Then

$$
\text { minimize } \quad\|\gamma \mathbf{a}+\mathbf{C y}-\mathbf{b}\| .
$$

We proceed as follows, suppose we know \mathbf{y}. Let $\mathbf{d}=\mathbf{C y}-\mathbf{b}$. Then this is just the one varible least squares problem

$$
\operatorname{minimize} \quad\|\gamma \mathbf{a}-\mathbf{d}\| .
$$

If we explain what this is, then we are looking for the best scaling of the vector a to get us as close to possible to \mathbf{d}.

TODO Add figure that explains this
A little bit of thinking yields the following insight: the scaling of \mathbf{a} is closest to \mathbf{d} when the difference $\gamma \mathbf{a}-\mathbf{d}$ is orthogonal to \mathbf{a}. If this weren't the case, then we could decrease the distance by moving a little bit in any direction. Hence, the solution γ must satisfy the relationship:

$$
\mathbf{a}^{T}(\gamma \mathbf{a}-\mathbf{d})=0 \quad \text { or } \quad \gamma=\frac{1}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a}^{T} \mathbf{d} .
$$

Now, we proceed as follows and substitute $\gamma(\mathbf{y})$ into our original least squares problem

$$
\text { minimize }\|\gamma(\mathbf{y}) \mathbf{a}+\boldsymbol{C y}-\mathbf{b}\| \rightarrow \text { minimize }\left\|\frac{1}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a}^{T}(\mathbf{C y}-\mathbf{b}) \mathbf{a}+\boldsymbol{C y}-\mathbf{b}\right\| .
$$

We can simplify this expression to

$$
\text { minimize }\left\|\left(\boldsymbol{I}-\frac{1}{\mathbf{a}^{T} \mathbf{a}^{T}} \mathbf{a}^{T} \mathbf{a}^{T}\right)(\boldsymbol{C y}-\mathbf{b})\right\| .
$$

This new problem has one fewer variable. If we recurse on this idea, we have the following algorithm.

```
function least_squares_eliminate(A,b)
    a = A[:,1]
    na = norm(a)
    q = a/na
    if size(A,2) == 1
        return [a'*b]/na
    end
    y = least_squares_eliminate(A[:,2:end]-q*q'*A[:,2:end], b - q*q'*b)
    \gamma= q'*(b - A[:,2:end]*y)/na
    return pushfirst!(y, }\gamma
end
```


1.2 A MATRIX VERSION

TODO See if we can get something better here...
The matrix structure in this problem is already slightly apparent. Let $\boldsymbol{T}=\left(\boldsymbol{I}-\frac{1}{\mathbf{a}^{T} \mathbf{a}} \mathbf{a}^{T} \mathbf{a}^{T}\right)$. Then we have

$$
\text { least-squares }(\boldsymbol{A}, \mathbf{b}) \rightarrow \text { least-squares }(\boldsymbol{T A S}, \boldsymbol{T b})
$$

Here S is a matrix that selects the last $n-1$ columns of a matrix.
Now, it turns out there is an issue here. The matrix \boldsymbol{T} is a special type of matrix called a projection. A projection matrix is any matrix where $\boldsymbol{T}^{2}=\boldsymbol{T}$. It represents a projection onto a subspace, so $T^{2}=T$ because the projection of a projection is the same projection. For this matrix \boldsymbol{T} it's just a few lines of algebra to verify that $\boldsymbol{T}^{2}=\boldsymbol{T}$.

TODO Add these lines
This is a small issue, though, because $\boldsymbol{T a}=0$ and so $\boldsymbol{T A}=\left[\begin{array}{ll}0 & \boldsymbol{T C}\end{array}\right]$. Thus, we lose all the information associated with a after the first transformation. However, suppose we just memorize this and store \mathbf{a} - after normalization - at each iteration into a matrix \boldsymbol{Q}.

To be entirely precise, let $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$. Let $\boldsymbol{T}_{1}, \ldots \boldsymbol{T}_{n}$ be the matrix $\boldsymbol{I}-\mathbf{q}_{i} \mathbf{q}_{i}^{T}$ formed in the least squares elimination algorithm at the i th call. Then we have:

$$
\mathbf{q}_{i}=\frac{1}{\left\|\boldsymbol{T}_{i-1} \cdots \boldsymbol{T}_{1} \mathbf{a}_{i}\right\|} \boldsymbol{T}_{i-1} \cdots \boldsymbol{T}_{1} \mathbf{a}_{i}
$$

In a bit of remarkable luck, the matrix \boldsymbol{Q} turns out to be orthogonal. In fact, it's the result of the Gram-Schmidt process.

1.3 THE GRAM-SCHMIDT PROCESS TODO

1.4 THE QR FACTORIZATION

All of these ideas can be generalized. The idea is that we transform A

