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Learning objectives
1. See a variety of ways to think about

eigenvalues
2. Look at the power method

Note, these notes are still being edited. There are a huge diversity of perspectives
and geometric interpretations of eigenvalues and eigenvectors, so it’s challenging to
know how to show them. I’m working on some pictures to help.

There are a variety of ways to derive and define the eigenvalues of a matrix A. The most
general definition of an eigenvalue of a matrix is a value λ such that det(A− λI) = 0. This
definition, however, obscures much of the utility of eigenvalues of symmetric matrices
(which are extremely common).

1 critical directions

** Still working on this section. Skip it now! **
The eigenvalues and eigenvectors of a symmetric, positive definite matrix A are critical

directions in the quadratic function

f (x) = 1
2
xTAx

that are invariant to transformations.
For a symmetric matrix A, then the eigenvalues of A are the stationary points of the

following optimization problem:

maximize
x

xTAx
subject to ∥x∥2 = 1

(1)

2 stationary points

To go ahead and define something in terms of another definition: stationary points
are those points where the Lagrangian of the problem has zero derivative. And what is the
Lagrangian? It’s a function that balances tradeoffs between the objective function xTAx
and the constraint ∥x∥2 = 1

L(x, λ) = xTAx − λ ⋅ (xTx − 1).

The gradient of this function is just

∂L/∂x = 2Ax − 2λx

∂L/∂λ = xTx − 1.

So at a stationary point, by definition, we have

Ax = λx xTx = 1.

Conclusion: any stationary point of (1) is a pair:

(x, λ) where Ax = λx

which implies that (A− λI)x = 0 and also that det(A− λI) = 0.
Note that this analysis gives the same result for minimizing the problem instead of

maxing
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3 the power method to find eigenvalues

Given that we have an optimization problem, one strategy to produce an algorithm is
to seek a maximizer of xTAx where ∥x∥ = 1. Because the goal is a maximizer, we would
do gradient ascent instead of gradient descent. However, this time we have a constraint
that makes the problem more complicated. A simplistic strategy to handle this constraint
is just to take a gradient step:

y = x(k) + 2γkAx(k)

and to project it back onto the feasible set:

x(k+1) = argminz∥z − y∥ where ∥z∥ = 1.

A quick analysis similar to~(1) shows that z = γy for some γ such that ∥z∥ = 1. That is to
say, we just take y and normalize it.

This gives us the iteration:

x(k+1) = x(k) + 2γkAx(k)

∥x(k) + 2γkAx(k)∥
.

Again, we are interested in maximizing x(k+1)TAx(k+1). This suggests taking γk large. In
the limit as γk →∞ 1 then we find that 1 —TODO – work out this derivation more.

Can we show that γk →∞ is a natural step?

x(k+1) = (Ax)/∥x∥ .
This is the power method!

DEFINITION 1 (the power method) Let x(0) be any vector. Then the power method is the iteration

x(k+1) = (Ax(k))/∥x(k)∥ .

There are no eigenvalues in the power method. Instead, there are only eigenvectors. To
get the eigenvalue, we need to look at the Rayleigh quotient

λ(k) = x(k)
T
Ax(k) .

This quantity can often be computed with minimal overhead because we need to compute
the vector Ax(k) to get the next iterate of the power method.

4 convergence of the power method

First, we need to show that the power method is really a simple algorithm. That is, we
need to show that x(k) = Mkx(0) for some matrix. This type of simple statement will not
quite be possible, we just need one slight correction to handle a sticky situation with the
norm.

THEOREM 2 Let x(k) be the kth iterate of the power method starting from x(0). Then x(k) =
Akx(0)/∥Akx(0)∥.

Proof This holds for x(1) given that this is the explicit iteration. To show that it holds for
all future iterations, we proceed inductively. Assume that it is true for the kth iteration:
x(k) = Akx(0)/∥Akx(0)∥. This also means that x(k) = ρkAkx(0) for some scalar ρk . Thus,

x(k+1) = ρkAk+1x(k)/∥ρkAk+1x(k)∥ .

And now ρk cancels out of the equation and we are done. ∎

This shows that we do have a simple algorithm and also that the long term behavior
will be governed by matrix powers.

5 termination

A good way to terminate the iteration is to check if we satisfy the eigenvalue residual

Ax(k) − λ(k)x(k) ≈ 0

2


	Critical directions
	Stationary points
	The power method to find eigenvalues
	Convergence of the power method
	Termination

