EIGENVALUES AND THE POWER METHOD

David F. Gleich
August 21, 2023

Note, these notes are still being edited. There are a huge diversity of perspectives and geometric interpretations of eigenvalues and eigenvectors, so it's challenging to know how to show them. I'm working on some pictures to help.

There are a variety of ways to derive and define the eigenvalues of a matrix A. The most general definition of an eigenvalue of a matrix is a value λ such that $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0$. This definition, however, obscures much of the utility of eigenvalues of symmetric matrices (which are extremely common).

1 CRITICAL DIRECTIONS

** Still working on this section. Skip it now! ${ }^{* *}$
The eigenvalues and eigenvectors of a symmetric, positive definite matrix \boldsymbol{A} are critical directions in the quadratic function

$$
f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \boldsymbol{A} \mathbf{x}
$$

that are invariant to transformations.
For a symmetric matrix \boldsymbol{A}, then the eigenvalues of \boldsymbol{A} are the stationary points of the following optimization problem:

$$
\begin{array}{ll}
\underset{\mathbf{x}}{\operatorname{maximize}} & \mathbf{x}^{T} \boldsymbol{A} \mathbf{x} \tag{1}\\
\text { subject to } & \|\mathbf{x}\|^{2}=1
\end{array}
$$

2 STATIONARY POINTS

To go ahead and define something in terms of another definition: stationary points are those points where the Lagrangian of the problem has zero derivative. And what is the Lagrangian? It's a function that balances tradeoffs between the objective function $\mathbf{x}^{T} \boldsymbol{A} \mathbf{x}$ and the constraint $\|\mathbf{x}\|^{2}=1$

$$
\mathcal{L}(\mathbf{x}, \lambda)=\mathbf{x}^{T} \boldsymbol{A} \mathbf{x}-\lambda \cdot\left(\mathbf{x}^{T} \mathbf{x}-1\right)
$$

The gradient of this function is just

$$
\begin{gathered}
\partial \mathcal{L} / \partial \mathbf{x}=2 A \mathbf{x}-2 \lambda \mathbf{x} \\
\partial \mathcal{L} / \partial \lambda=\mathbf{x}^{T} \mathbf{x}-1 .
\end{gathered}
$$

So at a stationary point, by definition, we have

$$
\boldsymbol{A} \mathbf{x}=\lambda \mathbf{x} \quad \mathbf{x}^{T} \mathbf{x}=1
$$

Conclusion: any stationary point of (1) is a pair:

$$
(\mathbf{x}, \lambda) \text { where } A \mathbf{x}=\lambda \mathbf{x}
$$

which implies that $(\boldsymbol{A}-\lambda \boldsymbol{I}) \mathbf{x}=0$ and also that $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0$.
Note that this analysis gives the same result for minimizing the problem instead of maxing

Learning objectives

1. See a variety of ways to think about eigenvalues
2. Look at the power method

3 THE POWER METHOD TO FIND EIGENVALUES

Given that we have an optimization problem, one strategy to produce an algorithm is to seek a maximizer of $\mathbf{x}^{T} \boldsymbol{A} \mathbf{x}$ where $\|\mathbf{x}\|=1$. Because the goal is a maximizer, we would do gradient ascent instead of gradient descent. However, this time we have a constraint that makes the problem more complicated. A simplistic strategy to handle this constraint is just to take a gradient step:

$$
\mathbf{y}=\mathbf{x}^{(k)}+2 \gamma_{k} \boldsymbol{A} \mathbf{x}^{(k)}
$$

and to project it back onto the feasible set:

$$
\mathbf{x}^{(k+1)}=\operatorname{argmin}_{\mathbf{z}}\|\mathbf{z}-\mathbf{y}\| \text { where }\|\mathbf{z}\|=1 .
$$

A quick analysis similar to $\sim(1)$ shows that $\mathbf{z}=\gamma \mathbf{y}$ for some γ such that $\|\mathbf{z}\|=1$. That is to say, we just take y and normalize it.

This gives us the iteration:

$$
\mathbf{x}^{(k+1)}=\frac{\mathbf{x}^{(k)}+2 \gamma_{k} \boldsymbol{A} \mathbf{x}^{(k)}}{\left\|\mathbf{x}^{(k)}+2 \gamma_{k} \boldsymbol{A} \mathbf{x}^{(k)}\right\|} .
$$

Again, we are interested in maximizing $\mathbf{x}^{(k+1)^{T}} \boldsymbol{A} \mathbf{x}^{(k+1)}$. This suggests taking γ_{k} large. In the limit as $\gamma_{k} \rightarrow \infty^{1}$ then we find that

$$
\mathbf{x}^{(k+1)}=(A \mathbf{x}) /\|\mathbf{x}\| .
$$

This is the power method!
DEFINITION 1 (the power method) Let $\mathbf{x}^{(0)}$ be any vector. Then the power method is the iteration

$$
\mathbf{x}^{(k+1)}=\left(A \mathbf{x}^{(k)}\right) /\left\|\mathbf{x}^{(k)}\right\| .
$$

There are no eigenvalues in the power method. Instead, there are only eigenvectors. To get the eigenvalue, we need to look at the Rayleigh quotient

$$
\boldsymbol{\lambda}^{(k)}=\mathbf{x}^{(k)^{T}} \boldsymbol{A} \mathbf{x}^{(k)} .
$$

This quantity can often be computed with minimal overhead because we need to compute the vector $\boldsymbol{A} \mathbf{x}^{(k)}$ to get the next iterate of the power method.

4 CONVERGENCE OF THE POWER METHOD

First, we need to show that the power method is really a simple algorithm. That is, we need to show that $\mathbf{x}^{(k)}=M^{k} \mathbf{x}^{(0)}$ for some matrix. This type of simple statement will not quite be possible, we just need one slight correction to handle a sticky situation with the norm.
THEOREM 2 Let $\mathbf{x}^{(k)}$ be the k th iterate of the power method starting from $\mathbf{x}^{(0)}$. Then $\mathbf{x}^{(k)}=$ $A^{k} \mathbf{x}^{(0)} /\left\|A^{k} \mathbf{x}^{(0)}\right\|$.

Proof This holds for $\mathbf{x}^{(1)}$ given that this is the explicit iteration. To show that it holds for all future iterations, we proceed inductively. Assume that it is true for the k th iteration: $\mathbf{x}^{(k)}=\boldsymbol{A}^{k} \mathbf{x}^{(0)} /\left\|\boldsymbol{A}^{k} \mathbf{x}^{(0)}\right\|$. This also means that $\mathbf{x}^{(k)}=\rho_{k} \boldsymbol{A}^{k} \mathbf{x}^{(0)}$ for some scalar ρ_{k}. Thus,

$$
\mathbf{x}^{(k+1)}=\rho_{k} \boldsymbol{A}^{k+1} \mathbf{x}^{(k)} /\left\|\rho_{k} A^{k+1} \mathbf{x}^{(k)}\right\| .
$$

And now ρ_{k} cancels out of the equation and we are done.
This shows that we do have a simple algorithm and also that the long term behavior will be governed by matrix powers.

5 TERMINATION

A good way to terminate the iteration is to check if we satisfy the eigenvalue residual

$$
\boldsymbol{A} \mathbf{x}^{(k)}-\lambda^{(k)} \mathbf{x}^{(k)} \approx 0
$$

