
CONDIT ION NUMBERS AND CONVERGENCE

David F. Gleich
August 21, 2023

1 the condition number as a fundamental matrix
quantity

Learning objectives
1. See how the matrix condition number

arises in terms of converge of Richardson
with the optimal parameter.
2. See how the matrix condition num-

ber arises in terms of converge of Steepest
Descent.
3. Compare the rates of convergence.

Here, we show that the condition number of a matrix determines how quickly various
simple iterative methods will converge on symmetric positive 1 − 1

κ(A) definite linear
systems. Thus, throughout these notes, we will assume that A is symmetric positive
definite.

1.1 RICHARDSON
Recall the Richardson iteration for Ax = b:

r(k) = b − Ax(k) x(k+1) = x(k) + ωr(k) .

We can write this in terms of the gradient for the quadratic problem:

f (x) = 1
2x

TAx − xTb with gradient g(x) = Ax − b = −r(x)

which gives
x(k+1) = x(k) − ωg(k) .

Now consider the error vector

e(k) = x(k) − x.

The evolution of the error is determined by

e(k+1) = x(k+1) − x = x(k) + ωr(k) − x = x(k) + ωb − ωAx(k) − x.
But note that ωb = ωAx for the true solution x. Hence

e(k+1) = x(k) + ωAx − ωAx(k) − x = (I − ωA)(x(k) − x)

or simply
e(k+1) = (I − ωA)e(k) = (I − ωA)ke(0) .

Up to this point, for Richardson, this is
entirely general and actually has not used
the assumption that A is symmetric positive
definite.

This converges quickly if we can make the spectral radius ρ(I − ωA) small. For a
symmetric positive definite matrix, there is an easy way to do this. The derivation is not
particularly interesting. The choice is:

ω = 2
λ1 + λn

where λ1 and λn are the smallest and largest eigenvalues of A respectively.1 For this choice 1 The way to determine this quantity is to
look at how I−ωA changes the eigenvalues of
A. This transform maps the region [λ1 , λn]
to the region [1−ωλn , 1−ωλ1]. We now want
to pick ω to minimize max(∣1 − ωλn ∣, ∣1 −
ωλ1 ∣). Note that when ω is small enough,
then 1 − ωλn and 1 − ωλ1 are both positive
and 1 − ωλ1 determines the spectral radius,
which decreases with ω. As ω increases,
1 − ωλn goes negative first (assuming λ1 /=
λn) and so at some point we have ∣1 − ωλn ∣ =
−1 + ωλn = ∣1 − ωλ1 ∣ = 1 − ωλ1 , which
gives ω = 2/(λ1 + λn) as required. This
equivalency point is minimizer as further
increasing ω just results in a larger spectral
radius.

we have
ρ(I − ωA) = λmax − λmin

λmax + λmin
.

There is no condition number yet, but it’s hiding inside this formula! For a symmetric
positive definite system, we have κ(A) = λmax

λmin
, and so we can adjust this expression to

include this ratio:

ρ(I − ωA) =
1

λmin
1

λmin

λmax − λmin

λmax + λmin
=
κ(A) − 1
κ(A) + 1

≤
κ(A) − 1
κ(A)

≤ 1 −
1

κ(A)
.

So the asympotic error in Richardson on a symmetric positive definite system goes to 0 at
a rate 1 − 1

κ(A) . Formally,
∥e(k)∥ ≤ (1 − 1

κ )
k
∥e(0)∥ .
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1.2 STEEPEST DESCENT
Wewill now show that the steepest descent iteration converges for a symmetric positive

definite system that also depends on κ(A).2 Recall that steepest descent uses a dynamic 2 This is a very slick proof that involves a
number of interesting quantities; it’s been
designed over years to be clever and simple,
so it’s the sort of proof that would be hard to
come up with yourself, so read through it a
few times to see what is going on.

choice of ω, called α or γ, that minimizes the function

f (x) = 1
2x

TAx − xTb

at each step. The iteration is

x(k+1) = x(k) − γkg(xk) γk =
g(xk)Tg(xk)
g(xk)TAg(xk)

.

We are going to tweak this setup slightly. Note that at a solution x = A−1b we have Recall that A is symmetric and so A−T =
A−1 .

f (A−1b) = 1
2b

TA−TAA−1b − bTA−Tb = − 1
2b

TA−1b.

The strategy we are going to use is to study the rate f (xk) → − 1
2b

TA−1b. But this is a
slightly annoying constant to have around, so we just study the function

s(x) = 1
2x

TAx − xTb + 1
2b

TA−1b

instead. This function is just shifted by a constant, and so the gradient is unchanged. Now,
we can study the rate at which s(xk)→ 0 instead, which makes life slightly easier.

This shifted function s is also nice for another reason. Let n(x) =
√
xTA−1x. Then we

can show that n(x) is a vector norm.3 Typically we write this as 3 This is a good exercise. The only challeng-
ing step is the triangle inequality. The easy
to way to show this is to use the fact that
n(x) = ∥F−1x∥ where F is the Choleksy
factor of A−1 (which exists because we have
a symmetric positive definite A and A−1 .

∥x∥A−1 =
√

xTA−1x.

Using this norm, we can write

s(x) = 1
2 ∥Ax − b∥

2
A−1 =

1
2 ∥g(x)∥

2
A−1 .

The goal is to show that s(x(k+1)) ≤ s(x(k))(constant less than 1). We have the following
that allow us to do so

g(xk) = gk γk =
gTk gk
gTk Agk

x(k+1) = (I − γkA)gk

s(x(k+1)) = 1
2 ∥(I − γkA)gk∥A−1 =

1
2g

T
k A
−1gk − γkg

T
k gk +

1
2γ

2
kgTk Agk = s(xk)−

1
2
(gTk gk)2

gTk Agk

s(x(k+1)) = s(xk)(1 − 1
2
(gTk gk)2

gTk Agk s(xk)
) = s(xk)(1 −

(gTk gk)2

gTk AgkgTk A
−1gk
)

because s(xk) = 1
2g

T
k A
−1gk .

The key is that this quantity (gTk gk)
2

gTk Agkg
T
k A
−1gk

is fairly close to a condition number. Let θ
be the inverse quantity so

θ =
gTk AgkgTk A

−1gk
(gTk gk)2

.

Then we have

θ =
gTk Agk
gTk gk

gTk A
−1gk

gTk gk
≤ max

g
[
gTk Agk
gTk gk

]max
g
[
gTk A

−1gk
gTk gk

] = λ1
1
λn

.

So we have
s(x(k+1)) = s(x(k))(1 − 1

κ(A)
)
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which is exactly the same rate as Richardson. To improve this, we need a stronger bound
on θ.

One such stronger bound is called the Kanterovich inequality. Let A be a symmetric
positive definite matrix and let v be any vector with vTv = 1, then

(vTAv)(vTA−1v) ≤ (λ1 + λn)
2

4λ1λn
.

This give us a better bound on θ and we get

1 − 1/θ ≤ (λ1 − λn)
2

(λ1 + λn)2
≤ (

κ(A) − 1
κ(A) + 1

)

2

≤ (1 − 1/κ(A))2 .

This completes the proof.

1.3 COMPARISON
Which method is faster? For Richardson we have

∥e(k)∥ ≤ (1 − 1
κ )

k
∥e(0)∥

whereas for Steepest Descent we have

s(x(k+1)) ≤ (1 − 1
κ )
(2k)s(x(0)).

To conclude that steepest descent is faster requires a comparison of s(x(k)) and ∥e(0)∥.
We will continue to study this relationship.
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