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Learning objectives
1. Examples of vector norms.
2. Examples of matrix norms.
3. The submultiplicative property of a

matrix norm.
4. The property that all norms are equiva-

lent

Norms are used to measure the size of vectors and matrices. They are generalizations
of the scalar function ∣x∣, which determines the size or magnitude of a scalar value. For
instance, if x is close to y, then we have ∣x − y∣ is close to zero.

So far, we have used the 2-norm of a vector. Let’s work with them formally.

1 vector norms

DEFINITION 1 The Euclidean norm or 2-norm of a vector1 is 1 This definition includes absolute values.
Yet, x2i ≥ 0 for all real values. We leave the
absolute values because this then generalizes
to complex values where we need a complex
magnitude.

∥x∥ =

¿
Á
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n
∑
i=1
∣x i ∣2 =

√
xTx

This can be generalized a p-norm.

DEFINITION 2 The p-norm of a vector is

∥x∥p = (
n
∑
i=1
∣x i ∣p)

1/p

.

This isn’t created to generalize for generalizations sake. One of the common uses of
norms is to argue that a sequence of vectors

xk → y

which can be handled by showing

∥xk − y∥ → 0.

Depending on the value of p, this can be easy or difficult. For instance, when p = 1, then
this is simply a sum of absolute values:

∥x∥1 =
n
∑
i=1
∣x i ∣

and p =∞ can be defined via a limit:2 2 It is a useful exercise to convince your-
self that as p → ∞, then the value of the
norm will simply be the largest element by
magnitude.∥x∥

∞
=

n
max
i=1
∣x i ∣.

Now, we are going to define an extremely general notion of norm in order to state a
few important results.

DEFINITION 3 A vector norm on x ∈ Rn is any function f (x)→ R that satisfies:

1. f (x) ≥ 0 (non-negative)

2. f (x) = 0 if and only if x = 0 (zero-sensitive)

3. f (αx) = ∣α∣ f (x) for any scalar α (1-homogeneous),

4. f (x + y) ≤ f (x) + f (y) (triangle inequality).
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Any p-norm with p ≥ 1 satisfies these definitions. When p < 1, then we violate the
triangle inequality.

There are some crazy norms too. For instance, the following function satisfies these
three criteria:

f (x) = sum of largest two entries in x by magnitude.

The following theorem guarantees that if xk → y for any norm,
then it will happen for all norms.

THEOREM 4 Informally, all vector norms are equivalent. Formally, let f (x) and д(x) be any
pair of vector norms on Rn , then there exist positive constants C1 ≤ C2 such that

C1 f (x) ≤ д(x) ≤ C2 f (x).

Note that these constants can depend on the dimension n.

Proof This is just a sketch, but the essence of the result is here; it requires just a little bit
more analysis to fully state. They key we look at how these functions map unit-vectors
to get the extreme values. Everything else follows from straightforward (but not simple)
analysis. The values in the theorem are:

C1 =
maximize

x
f (x)

subject to д(x) ≤ 1
and C2 =

maximize
x

д(x)
subject to f (x) ≤ 1

.

Note that because of the scalar property, the extreme must occur on a boundary of the
feasible set, i.e. where f (x) = 1. (If this isn’t obvious, a quick proof by contradiction
should help: If there is a point inside that gets the max, then we can scale it and make f (x)
(say) bigger and also д(x) bigger, so it can’t be optimal.) This is why we get the values of
C1 and C2 in the above proof. ∎

For instance, ∥x∥
∞
≤ ∥x∥1 ≤ n∥x∥∞ is an instance with C1 = 1,C2 = n.

QuizWhat are C1 and C2 such that C1∥x∥1 ≤ ∥x∥∞ ≤ C2∥x∥1?
Consequently, suppose, for a vector norm f (x), you show that f (xk − y)→ 0. Then

we know that C2 f (x) ≥ д(x) and also that C2 f (xk − y) → 0. Since д(x) ≥ 0, then we
must have д(xk − y)→ 0 as well.

2 matrix norms

Vector norms measure the size or magnitude of a vector. Matrix norms do the same
for a matrix. There are two important types of matrix norms: element-wise (or Frobenius
norms) and operator norms. Just like vector norms, there is a general condition for all
matrix norms.

DEFINITION 5 A matrix norm on X ∈ Rm×n is any function f (X)→ R that satisfies:
1. f (X) ≥ 0 (non-negative)

2. f (X) = 0 if and only if X = 0 (zero-sensitive)

3. f (αX) = ∣α∣ f (X) for any scalar α (1-homogeneous)

4. f (X + Y) ≤ f (X) + f (Y) (triangle inequality).

2.1 ELEMENT-WISE NORMS
Note that if vec X is any way of turning X into a vector by organizing themn elements

of X into a single array, then f (vec(X)) is a matrix norm for any vector norm f (x). These
are called element-wise norms. The most common of which is the Frobenius norm.

DEFINITION 6 The Frobenius norm of a matrix is

∥X∥F =
√

∑
i j
∣X i j ∣2 = ∥ vec(X)∥2 =

√

trace(ATA).

Here, we used trace(A) = ∑min(m ,n)
i=1 A i , i , which is the sum of diagonal entries.
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2.2 OPERATOR- INDUCED NORMS
Let f (x) be any vector norm, then we can define a matrix norm via:

f (X) = maximize
x/=0

f (Ax)/ f (x) .

Proof that f (X) is a matrix norm

1. f (X) ≥ 0 because f is a vector norm.
2. If f (X) = 0, then f (Ax)/ f (x) = 0 for all vectors x /= 0. Since f (ei) > 0, then we

must have f (Aei) = 0 for all ei , so the matrix is entirely empty. Also, if A = 0, then
Ax = 0 for any x, and so f (A) = 0.

3. f (αX) = maximize
x/=0

f (αAx)/ f (x) = ∣α∣ f (X).
4. Note that f ((X + Y)x) ≤ f (Xx) + f (Yx) be the vector-norm triangle inequality.

Hence,

f (X + Y) = maximize
x/=0

f ((X + Y)x)/ f (x) ≤ maximize
x/=0

f (Xx)/ f (x) + f (Yx)/ f (x)

≤ maximize
x/=0

f (Xx)/ f (x) + maximize
x/=0

f (Yx)/ f (x)

≤ f (X) + f (Y)

The operator induced norms are harder to reason about.
Let f (x) = ∥x∥1, then

∥A∥1 =
n

max
j=1

m
∑
i=1
∣A i j ∣

which is the maximum column 1-norm. If, instead, f (x) = ∥x∥
∞
, then

∥A∥
∞
=

m
max
i=1

n
∑
j=1
∣A i j ∣

which is the maximum row 1-norm.
Here’s my picture to remember these.

∥A∥1 = ∥A∥1 /=

looks okay looks wrong

∥A∥
∞
/= ∥A∥

∞
=

looks wrong looks okay

2.3 ADDIT IONAL MATRIX NORMS This section can be skipped on a first read-
ing.There is a wide additional class of norms defined in terms of the singular values of a

matrix. See other sections on the singular values and their definitions.3 3 TODO Insert reference when assembled
into bigger document.An m × n real-valued or complex-valued matrix has min(m, n) non-negative real

singular values. Let σ1 , . . . , σmin(m ,n) be the singular values of a m × n matrix with m ≥ n.

DEFINITION 7 (The Nuclear Norm, the Trace Norm) Let σ1 , . . . , σmin(m ,n) be the singular values of
an m × n matrix A. Then the nuclear norm also called the trace norm is the matrix norm
based on the function

f (A) =∑
i
σi commonly denoted ∥A∥

∗
.

DEFINITION 8 (The Schatten Norms) Let σ1 , . . . , σmin(m ,n) be the singular values of an m × n
matrix A. Let s be the vector of singular values, ordered arbitrarily. Then the Shatten
p-norm is the matrix norm based on the function

f (A) = ∥s∥p .
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DEFINITION 9 (The Ky-Fan Norms) Let σ1 , . . . , σmin(m ,n) be the singular values of an m × n ma-
trix A where σ1 ≥ σ2 ≥ . . . ≥ σmin(m ,n) by convention (that is, the elements are ordered in
decreasing order in most conventions). Then the Ky-Fan p-norm is the matrix norm based
on the function

f (A) =
p

∑
i=1

σi .

Note that both Shatten and Ky-Fan norms are vector norms applied to the vector of
singular values s. For Shatten norms, it is a p-norm. For Ky-Fan norms, it is the sum of
the largest p elements. Indeed, any vector norm applied to the singular values of a matrix
is a valid matrix norm.

3 norm properties

3.1 ORTHOGONAL INVARIANCE
An important property of a norm is that it is orthogonally invariant. This property is a

realization of two ideas:

· norms measure lengths
· orthogonal matrices generalize rotations

When we rotate a vector, we simple change its orientation, but not its length. Conse-
quently, we have the definition:

DEFINITION 10 (orthogonally invariant) Let Q be a square orthogonal matrix. Then a vector norm
f (x) is orthogonally invariant when

f (Qx) = f (x) or written as ∥Qx∥ = ∥x∥ .

Let A be an m × n matrix. Let U be a square m ×m orthogonal matrix and let V be a
square n × n orthogonal matrix. Then a matrix norm f (A) is orthogonally invariant when

f (UAV) = f (A) or written as ∥UAV∥ = ∥A∥ .

3.2 SUBMULTIPLICATIVE
Note that operator-induced matrix norms satisfy the property that:

f (Ax) ≤ f (A) f (x)

which is handy for studying iterative algorithms! This property has the special name:
sub-multiplicative.

DEFINITION 11 A matrix-norm f (A) is sub-multiplicative if:

f (AB) ≤ f (A) f (B).

As you’ll see on the homework, not all norms are sub-multiplicative. But we can always
scale a norm to be sub-multiplicative.

4 exercises

1. Let x ∈ Cn . Decompose x into the real and imaginary parts: x = y + iz where

y ∈ Rn and z ∈ Rn . Show that ∥x∥2 = ∥ [
x
y] ∥

2
.

2. Let P be a permutation matrix. So Px reorders the elements of x. Find a vector-
norm function on length 2 vectors where ∥x∥ /= ∥Px∥.

3. (This requires knowledge of the SVD.) Show that the Schatten and Ky-Fan norms
are orthogonally invariant.
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