
ADVANCED VARIATIONS OF THE STANDARD PROBLEMS

David F. Gleich
August 21, 2023

1 advanced variations of the standard problems

The standard problems in linear algebra are

min ∥Ax − b∥ least squares

Ax = b linear systems

Ax = λx eigenvalues

Ax = σy singular values

In this note, we look at variations on these problems that we call advanced not because
they are hard, but because they would occur in the context of a different type of application.
We will also see one new problem, the matrix function!

For a linear system of least squares problem, an extremely common variation is that
we have a set of right hand sides to solve. This occurs in two forms, one where all of the
vectors are available at once, and a second where each solution gives rise to a new problem.

1.1 MULTIPLE RIGHT HAND SIDES ALL KNOWN AHEAD OF TIME
The problem here is that we need to solve Ax = b for many vectors b1 , . . . , bk . In

the simplest case, we will know b1 , . . . , bk ahead of time. In this case, we really have the
matrix problem

AX = B B = [b1 ⋯ bk]

where X is the n by k matrix of all k solutions.
Such a scenario arises in a number of places. First, consider actually computing the

inverse of a matrix A. 1 Then we would set B = I, and there are k = n vectors b all known. 1 Aside, you shouldn’t generally do this!
It’s a good way to fail the class if you do
this without careful consideration of the
alternatives.

Another, more realistic scenario, arises in block Gaussian elimination. Suppose we are
solving

Ab = b where we have the partition [A1 A2
A3 A4

] [
x1
x2
] = [

b1
b2
] .

Then note that if A1 is non-singular, then x1 must satisfy A1x1 + A2x1 = b1 or

x1 = A−11 b1 + A−11 A2x2 .

The matrix A−11 A2 is exactly this type of system.
The simplest way to solve these is just to call \ in Julia or Matlab. This will look at

the structure of A1 and choose an appropriate method to solve for all right hand sides
simultaneously. It will use multiple threads and processors as appropriate.

In practice, what this will do is compute a factorization of the matrix A and then apply
this to all the vectors b1 , . . . , bk at the same time.

In general, for a dense system of linear equations, it takes O(n3
) work to compute a

factorization and then O(n2
) work to solve a system with the factors. This gives an overall

runtime of O(n2k + n3
), which is O(n3

) if k ≤ O(n) andmore interseting if k ≥ O(n).
As an example where the latter scenario arises, consider the partiton above where A1

is 16 × 16 and n is 1024.

1



1.2 MULTIPLE RIGHT HAND SIDES DETERMINED SEQUENTIALLY
The second setting for multiple right hand sides is that we have

Ax1 = b1

which determines b2, so b2 is unknown until we have solved x1. Then we must solve

Ax2 = b2

Ax3 = b3 = function of x2 .

and so on...

The key is that the matrix A is fixed, which is a scenario that arises in
· the inverse power method for eigenvalues
· backward Euler for linear ODEs.

Inverse power method Recall the power method for dominant eigenvalue, eigenvector
pair of a matrix

x(0) = arbitrary x(k+1) = ρkAx(k) ρk =
1

∥Ax(k)∥
.

If the largest magnitude eigenvalue of A is unique, then x(k) will converge towards the
associated eigenvector. The inverse power method simply runs this iteration on A−1

instead (assuming A is non-singular). For instance, if A is symmetric positive definite,
then the inverse power method will converge to the smallest eigenvalue of A. Here, we
have exactly this type of setting where b(k+1) = ρkx(k).2 2 Again, note that the way to do this isn’t

to compute A−1 and use that instead of A!
That’s another good way to fail the class.Backward Euler for a linear ODE XXX-TODO-XXX

The factorization solution The best way to approach these problems is to factorize your
linear system A via Cholesky, LU, or QR.These are be done on O(n3

) work and then each
solve is O(n2

) time. This approach also allows us to exploit structure in the matrix A that
may not exist in the inverse A−1 to make things go faster.

The Julia code Julia includes a number of awesome routines to work with matrix factor-
izations like the original matrix. For instance,

1 F = lufact(A) # produces a factorization object F

2 F \ y # solves Ax = y using the LU factorizations without recomputing it.

So we could implement the inverse power method as follows

1 function invpower(A::Matrix)

2 x = normalize!(randn(size(A,1)))

3 F = lufact(A)

4 for iter = 1:maxiter

5 x = normalize!(F\x)

6 end

7 return x

8 end

2


	Advanced Variations of the Standard Problems
	Multiple right hand sides all known ahead of time
	Multiple right hand sides determined sequentially


