
purdue university · cs 51500
matrix computations

H O M E WO R K
David F. Gleich
August 31, 2023

Homework 1
Please answer the following questions in complete sentences in a clearly prepared
manuscript and submit the solution by the due date on Gradescope.

Remember that this is a graduate class. There may be elements of the problem
statements that require you to fill in appropriate assumptions. You are also
responsible for determining what evidence to include. An answer alone is rarely
sufficient, but neither is an overly verbose description required. Use your judge-
ment to focus your discussion on the most interesting pieces. The answer to
“should I include ‘something’ in my solution?” will almost always be: Yes, if you
think it helps support your answer.

• 2023-08-30 : Small edit to problem 1-4 to address why e was there.

Problem 0: Homework checklist
• Please identify anyone, whether or not they are in the class, with whom

you discussed your homework. This problem is worth 1 point, but on a
multiplicative scale.

• Make sure you have included your source-code and prepared your solution
according to the most recent Campuswire note on homework submissions.

Problem 1: Operations

1. Diagonal scaling.

2 0 0
0 1/2 0
0 0 −1

 1 2 3
6 4 2

−2 −2 −2

 = ?

2. Diagonal scaling.

 1 2 3
6 4 2

−2 −2 −2

 2 0 0
0 1/2 0
0 0 −1

 = ?

3. Describe the difference in multiplying a diagonal matrix on the left compared
with the right.

4. We often use the vector e =
[
1 . . . 1

]T (i.e. the all ones vector). $x= e=
$ ones(1000,1) y = 1:1000, what is xT y = ?

5. Let ei be the vector with all zeros and a 1 in the ith entry. Let A be an
m × n matrix. Give an expression for the rth row of A as a result of a
matrix vector product. Give an expression for the cth column of A as a
result of a matrix vector product.

6. x =
[
−5 4 2

]T . (Assume ei is 3 × 1.) e2xT =?
xeT

1 =?

Problem 2: Identify matrix structure
1. Consider a matrix of social security numbers. Each row is a distinct number

and each column has one of the social security numbers for a faculty member
at Purdue. Explain why this is or isn’t a matrix, using the ideas from class.
This example is entirely ficticious.

1

2. Consider a collection of 10000 greyscale images. Each image is 64 by 64
pixels, or 4096 distinct numbers. Suppose we create a matrix where each
column represents a 32 by 32 pixel corner of each image. So the matrix is
1024 rows by 40000 columns. Explain why this is or isn’t a matrix, using
the ideas from class.

3. Consider a matrix of demographic information for many all undergrad CS
applicants at Purdue. Each student is a row. The columns represent:

• 0/1 (had a highschool GPA >= 3.75)
• 0/1 (had a highschool GPA >= 3.25)
• The numeric ID the state they graduated high-school in (there is a canonical

labeling of the 50 states from 01 to 50).
• 0/1 has more than three letters of recommendation
• number of times the word “excellent” “top-tier” “best” appears in letters of

recommendation
• Flesch-Kincaid Grade Level of personal statement This example is entirely

ficticious. Explain why this is or isn’t a matrix, using the ideas from class.

4. Let A be the matrix from part 1. Consider the new matrix B = AT A.
Explain why this is or isn’t a matrix, using the ideas from class.

5. Let A be the matrix from part 2. Consider the new matrix B = AT A.
Explain why this is or isn’t a matrix, using the ideas from class.

6. Let A be the matrix from part 3. Consider the new matrix B = AT A.
Explain why this is or isn’t a matrix, using the ideas from class.

Problem 3. Some simple structure.
1. Show that the product of two diagonal matrices is also diagonal.

2. Show that the product of two upper triangular matrices is upper triangular.

3. Show that multiplying a tridiagonal matrix (i.e. a matrix with entries on
the diagonal and the sub and super diagonal) by itself results in a matrix
with five diagonals.

Problem 4: More interesting proofs

Let A and C be invertible matrices. We’ll prove that the inverse of
[
A B
0 C

]
is

easy to determine!

1. Show that the inverse of [
1 a
0 1

]
is [

1 −a
0 1

]
.

2. Now, show that the inverse of [
I A
0 I

]
is [

I −A
0 I

]
.

2

3. Recall that for general A and B, not those in the problem!, (AB)−1 =
B−1A−1. Use this fact, and the result of part 2, to determine the inverse

to
[
A B
0 C

]
when A and C are invertible. Alternatively, give the inverse of[

A B
0 C

]
. Hint: think about diagonal matrices!

4. Elementary matrices Householder, who we will talk about in forthcoming
lectures, has a few things named after him. He discussed the idea that any
matrix:

I − σuvT

should be called an elementary matrix. Show when an elementary matrix is
invertible and give the inverse. (This does not involve the other parts of
this problem, although there)

Problem 5: Viral spreading in Julia
This problem will be more difficult if you haven’t used Julia or Matlab
before, so get started early! It’s designed to teach you about writing
for loops to construct a matrix operation for a particular task.

In this problem, we will explore some simple viral spreading processes in julia,
both as nonlinear probability processes as well as matrix computations.

We are going to use a standard routine to generate random graphs for these
experiments.

Generate a simple spatial graph model to look at.
using NearestNeighbors, Distributions, SparseArrays
function spatial_graph_edges(n::Integer,d::Integer;degreedist=LogNormal(log(4),1))

xy = rand(d,n)
T = BallTree(xy)
form the edges for sparse
ei = Int[]
ej = Int[]
for i=1:n

deg = min(ceil(Int,rand(degreedist)),n-1)
idxs, dists = knn(T, xy[:,i], deg+1)
for j in idxs

if i != j
push!(ei,i)
push!(ej,j)

end
end

end
return xy, ei, ej

end
function spatial_network(n::Integer, d::Integer; degreedist=LogNormal(log(3),1))

xy, ei, ej = spatial_graph_edges(n, d;degreedist=degreedist)
A = sparse(ei,ej,1,n,n)
return max.(A,A'), xy

end
using Random
Random.seed!(10) # ensure repeatable results...
A,xy = spatial_network(10, 2)

1. Run the code above and report the adjacency matrix that it generates along
with the coordinates.

3

2. Now, I like pictures! Here is the code to draw the graph given the coordinates
of each node xy.

using Plots
function plotgraph(A::SparseMatrixCSC,xy::AbstractArray{T,2};kwargs...) where T

px,py = zeros(T,0),zeros(T,0)
P = [px,py]
rows = rowvals(A)
skip = NaN.*xy[:,begin] # first row
for j=1:size(A,2) # for each column

for nzi in nzrange(A, j)
i = rows[nzi]
if i > j

push!.(P, @view xy[:,i])
push!.(P, @view xy[:,j])
push!.(P, skip)

end
end

end
plot(px,py;framestyle=:none,legend=false,kwargs...)

end

Use the following code to prepare a visual.

plotgraph(A,xy,alpha=0.25)
scatter!(xy[1,:],xy[2,:],

markersize=2, markerstrokewidth=0, color=1)

Save this as a figure using savefig and include it in your writeup.

(Optional) If you want to add labels, here’s a fancy way to do it.

annotate!.(map(i->(xy[1,i], xy[2,i], text("$i", :white, 8)), 1:size(xy,2)))

This is fancy syntax, so let me explain it. annotate! The ! identifies a
‘mutating’ function because it changes something. The . means “broadcast”
over the list. That is equivalent to running annotate! for each element
of the list. The map function just builds the list to run annotate! over by
telling it the x,y coordinate of where to annotate and then what to annotate
(in this case, text, which gives the value i that is input to the map function,
in white, at font-size 8. You may need to change 8 depending on your
display.

3. Next up, we want to run our evolving viral spreading process. Here, we are
going to evolution process that does not consider the probability of infecting
yourself based on the previous time-step. We are also going to remove the
max and handle it in a slightly different way. Fill in the missing code to do
this.

function evolve(x::Vector, p::Real, A::AbstractMatrix)
log_not_infected = log.(1 .- p.*x)
y = 1 .- exp.(A*log_not_infected)

end
"""
Run k steps of the evolution and return the results as a matrix.
Each column of the matrix has the probabilities that the node
is infected under the `wrong` evolve function.
The first column of X is the initial vector x0.
At each iteration, we make sure the probabilities are at least x0 and these
are fixed.
"""

4

function evolve_steps(x0::Vector, p::Real, A::AbstractMatrix, k::Int)
X = zeros(length(x0),k+1)
fill in the missing code

X[:,i+1] = max.(evolve(X[:,i], p, A), X[:,1]) # fix the initial probability x0
fill in the missing code
return X

end

Show the matrix X and explain are starting condition where we set:

p = 0.2
x0 = zeros(size(A,1))
x0[1] = 1
evolve_steps(x0, p, A, 10)

4. Given such a matrix X, the column-sums reflect the expected number of
people that are infected (this is true if we make the slightly unrealistic
assumption that people combine linearly in expectation and are independent
– both bad, but simple, assumptions.) (i) Make a plot of the column sums
of X for all rows of X except for row 1, which is the node that we definitely
infected in the previous part. (Hint: this is a partial answer to the previous
question, good job reading ahead!) (ii) Do you agree or disagree that
this plot intuitively shows the expected number of infections possible from
this single infection in expectation in our very simple model? (If you like
to be extremely detailed about probability calculations–and it is good to
be that way, but I can’t put all possible details in one simple question
unfortunately–put on a physisicst hat for a second and pretend to be a little
more forgiving.) Explain your reasoning.

5. First, (i) implement the following function for our approximation evolution.

"""
Run k steps of the approximate evolution and return the results as a matrix.
Each column of the matrix has the probabilities that the node
is infected under the `wrong` evolve function.
The first column of X is the initial vector x0.
At each iteration, we make sure the probabilities are at least x0 and these
are fixed.
"""
function approx_evolve_steps(x0::Vector, p::Real, A::AbstractMatrix, k::Int)

X = zeros(length(x0),k+1)
fill in the code using the approximation evolution.
return X

end

and (ii) also make the same plot as in part 4 and compare to your previous
plot. Finally, (iii) find the largest value of p or ρ such that the two plots
look similar to you!

Here was some of my code to play around with this.

p = 0.2
x0 = zeros(size(A,1))
x0[1] = 1
Y = approx_evolve_steps(x0, p, A, 15)
X = evolve_steps(x0, p, A, 15)
plot(sum(X[2:end,:],dims=1)')
plot!(sum(Y[2:end,:],dims=1)')

6. Now, we are going to make the networks much bigger. Let’s make a 1000
node network. We will also start the infections from node 1000.

5

Random.seed!(10)
A,xy = spatial_network(1000, 2)

Assume the column-sums represent an appropriate expected value for the
number of infections at time step k due to the single initial infection. (If
you listed caveats above, consider them noted, but let’s keep it simple here!)

How many people would we expect to be infected under the true probability
model vs. the approx. model for p = 0.05, 0.1, 0.15, 0.20 after 10 steps where
node 1000 is infected initially?

7. Some of those numbers are big! We want fewer people infected. Let’s try
social distancing. Suppose each person visits half of the number of people,
where we pick the folks to keep based on our coordinates xy. (We keep the
closest people to us, of course. . .)

""" return a new "social" graph where we have implemented
social distancing by removing an f-fraction of your neighbors
based on spatial proximity. So f=0 is the original network
and f=1 is the empty network."""
function social_distance(A::SparseMatrixCSC, xy::Matrix, f::Real)

access the CSC arrays directly, see help on nzrange
rowval = rowvals(A)
n = size(A,1)
new_ei = Vector{Int}()
new_ej = Vector{Int}()
for j = 1:n

neighbors = Vector{Int}()
dists = Vector{Float64}()
myxy = @view xy[:,j] # don't make a copy
for nzi in nzrange(A, j)

edge from (i,j)
i = rowval[nzi]
push!(neighbors, i)
push!(dists, norm(xy[:,i]-myxy))

end
p = sortperm(dists) # sort distances
nkeep = ceil(Int, (1-f)*length(dists))
for i=1:nkeep

push!(new_ei, neighbors[p[i]])
push!(new_ej, j)

end
end
A = sparse(new_ei,new_ej,1, size(A,1),size(A,2))
return max.(A,A')

end

How do various levels of social distancing change the expected number of
people infected by node 1000 after 10 steps? Lets say 10% distancing, up to
60%. Evaluate this both for the “exact” vs. “approximate” model.

8. What would wearing masks change in this model? Can you work out
anything analytical about how wearing masks changes the approximate
model?

6

Problem 6: The expected length of a Chutes and Ladders
game
This problem will be more difficult if you haven’t used Julia or Matlab
before, so get started early! It’s designed to teach you about writing
for loops to construct a matrix operation for a particular task.

In class, we showed that we could form a linear system of equations in order to
determine the expected time that a random walk on the integers [−4, 6] spends
before it reaches the endpoints −4 and 6. We can do the same thing to determine
the expected length of a game of Chutes and Ladders!

The data for Chutes and Ladders as a Markov chain is available from

• https://www.cs.purdue.edu/homes/dgleich/cs515-2023/homeworks/
chutes-and-ladders-matrix.csv

• https://www.cs.purdue.edu/homes/dgleich/cs515-2023/homeworks/
chutes-and-ladders-coords.csv

The starting state is state 101. The ending state is 100.

(This is based on https://www.datagenetics.com/blog/november12011/)

1. Use the same type of implicit formulation where xi is the expected length
of a Chutes and Ladders game starting from cell i to derive a linear system
of equations. Build and solve this linear system of equations in Julia. You
should provide the linear system in terms of the matrix T , but you should
not provide explicit entries. Also, presumably, the creators would have
made the start state the place of maximum game length. Is this the case or
is there another cell or set of cells that result in a longer game?

For this problem, I found it helpful to visualize a solution to make sure it
made sense. I used the following line of code to visualize a solution x:

p = scatter(xc, yc, zcolor=x,
markersize=16, label="", marker=:square, markerstrokewidth=0, size=(400,400),

xlims=(0.5,10.5),ylims=(0.5,10.5),aspect_ratio=:equal)
function draw_chutes_and_annotate(p)

CL = [1 4 9 21 28 36 51 71 80 98 95 93 87 64 62 56 49 48 16
38 14 31 42 84 44 67 91 100 78 75 73 24 60 19 53 11 26 6]

for col=1:size(CL,2)
i = CL[1,col]
j = CL[2,col]
if i > j # this is a chute

plot!(p,[xc[i],xc[j]],[yc[i],yc[j]],color=2,label="")
else

plot!(p,[xc[i],xc[j]],[yc[i],yc[j]],color=1,label="")
end

end
map(i->annotate!(p,xc[i],yc[i], text("$i", :white, 8)), 1:100)
p

end
draw_chutes(p)

where xc and yc are the coordinates from the coords file.

2. Recall that in class we showed that pk = T k−1t101 gave the probability of
being in each state after k steps. By definition, the expected length of the
game is:

∞∑
k=1

k[pk]100.

7

https://www.cs.purdue.edu/homes/dgleich/cs515-2023/homeworks/chutes-and-ladders-matrix.csv
https://www.cs.purdue.edu/homes/dgleich/cs515-2023/homeworks/chutes-and-ladders-matrix.csv
https://www.cs.purdue.edu/homes/dgleich/cs515-2023/homeworks/chutes-and-ladders-coords.csv
https://www.cs.purdue.edu/homes/dgleich/cs515-2023/homeworks/chutes-and-ladders-coords.csv

Develop a computer program to approximately compute this sum. Is there
a good way to determine when to stop adding terms? What value do you
get?

Problem 7: Poisson’s equation
This problem will be more difficult if you haven’t used Julia or Matlab
before, so get started early! It’s designed to teach you about writing
for loops to construct a matrix operation for a particular task.

Also note that you will use this routine on future homeworks. Make
sure to talk to us in Office hours if you don’t get it right.

In this problem, we’ll meet one of the most common matrices studied in numerical
linear algebra: the 2d-Laplacian. We arrive at this matrix by discretizing a partial
differential equation. Poisson’s equation is:

∆u = f

where u(x, y) is a continuous function defined over the unit-plane (i.e. 0 ≤ x ≤
1, 0 ≤ y ≤ 1), f(x, y) is a continuous function defined over the same region, and
∆ is the Laplacian operator:

∆u = ∂2u/∂x2 + ∂2u/∂y2.

Given a function f , we want to find a function u that satifies this equation. There
are many approaches to solve this problem theoeretically and numerically. We’ll
take a numerical approach here.

Suppose we discretize the function u at regular points x0, . . . , xn, and y0, . . . , yn

where xi = yi = i/n so that we have:

u(x, y) ≈ grid of
u(x0, y0) · · · u(xn, y0)

...
. . .

...
u(x0, yn) · · · u(xn, yn).

For this discretization, note that

∆u(xi, yj) ≈ n2 (u(xi−1, yj) − 2u(xi, yj) + u(xi+1, yj))
+ n2 (u(xi, yj−1) − 2u(xi, yj) + u(xi, yj+1))

= n2 (u(xi−1, yj) + u(xi, yj−1) − 4u(xi, yj) + u(xi+1, yj) + u(xi, yj+1))
= f(xi, yj).

What we’ve done here is use the approximation:

∂2u/∂x2 ≈ 1
h2 (u(x − h) − 2u(x) + u(x + h))

for both partial terms.
We need this equation to hold at each point xi, yj . But note that there are some
issues with this equation at the boundary values (where x=0 or 1, or where y=0
or 1).
For this problem, we’ll make it very simple and set:

u(0, yj) = u(1, yj) = u(xi, 0) = u(xi, 1) = 0.

Now, we’ll do what we always do! Turn this into some type of matrix equation!

8

Let U be an n + 1 × n + 1 matrix that we’ll index from zero instead of one:

U =

U0,0 · · · U0,n

...
. . .

...
Un,0 · · · Un,n

 .

where Ui,j = u(xi, yj). At this point, we are nearly done. What we are going to
do is turn Poisson’s equation into a linear system.

In order to write U as a vector, we’ll keep the convention from last time:

U =

u1 · · · un+1

un+2 · · · u2(n+1)
...

. . .
...

un(n+1)+1 · · · u(n+1)(n+1)

 .

Let u be the vector of elements here. Note that our approximation to ∆u, just
involved a linear combination of the elements of u. This means we have a linear
system:

Au = f
where the rows of A and f correspond to equations of the form:

1
h2 (u(xi−1, yj) + u(xi, yj−1) − 4u(xi, yj) + u(xi+1, yj) + u(xi, yj+1) = f(xi, yj).

1. Let n = 3. Write down the 16 × 16 linear equation for u including all the
boundary conditions. Note that you can encode the boundary conditions
by adding a row of A where: ui = 0.

2. Write a Julia or Matlab/Python code to construct a sparse matrix A and
vector f when n = 10 and f(x, y) = 1. Here’s some pseudo-code to help out:

function laplacian(n::Integer, f::Function)
N = (n+1)^2
nz = <fill-in>
I = zeros(Int,nz)
J = zeros(Int,nz)
V = zeros(nz)
fvec = zeros(N)
the transpose mirrors the row indexing we had before.
G = reshape(1:N, n+1, n+1)' # index map, like we saw before;
h = 1.0/(n)
index = 1
for i=0:n

for j=0:n
row = G[i+1,j+1]
if i==0 || j == 0 || i == n || j == n

we are on a boudnary
fvec[row] = 0.0
fill in entries in I,J,V and update index

else
fvec[row] = f(i*h, j*h)*h^2
fill in entries in I,J,V and update index

end
end

end
A = sparse(I,J,V,N,N)
return A, fvec

end

9

3. Solve for u using Julia’s or Matlab’s backslash solver, and show the result
using the mesh function (Matlab) or surface function (Plots.jl in Julia).

4. Show that we can eliminate rows and columns from the matrix and or
equations and variables from the problem for the nodes on the boundary.
The resulting matrix should be symmetric. This is what we will call the
“poisson” matrix in future problems in class.

Problem 8: Sparse matrix operations
Write working code for the following operations for a matrix given by Compressed
Sparse Column arrays: colptr, rowval, nzval along with dimensions m and n as
in the Julia sparse matrix storage.

1. Sparse matrix-transpose multiplication by a vector

""" Returns y = A'*x where A is given by the CSC arrays
colptr, rowval, nzval, m, n and x is the vector. """
function csc_transpose_matvec(colptr, rowval, nzval, m, n, x)
end

2. Column inner-product

""" Returns = A[:,i]'*x where A is given by the CSC arrays
colptr, rowval, nzval, m, n and x is the vector. """
function csc_column_projection(colptr, rowval, nzval, m, n, i, x)
end

3. Column-column inner-product

""" Returns rho = A[:,i]'*A[:,j] where A is given by the CSC arrays
colptr, rowval, nzval, m, n and i, and j are the column indices. """
function csc_col_col_prod(colptr, rowval, nzval, m, n, i, j)
end

4. Lookup element

""" Returns rho = A[i,j] where A is given by the CSC arrays
colptr, rowval, nzval, m, n and i, and j are the column indices. """
function csc_lookup(colptr, rowval, nzval, m, n, i, j)
end

5. Lookup row

""" Returns x = A[i,:] where A is given by the CSC arrays
colptr, rowval, nzval, m, n and i is the row index . """
function csc_lookup_row(colptr, rowval, nzval, m, n, i)
end

10

	Homework 1
	Problem 0: Homework checklist
	Problem 1: Operations
	Problem 2: Identify matrix structure
	Problem 3. Some simple structure.
	Problem 4: More interesting proofs
	Problem 5: Viral spreading in Julia
	Problem 6: The expected length of a Chutes and Ladders game
	Problem 7: Poisson's equation
	Problem 8: Sparse matrix operations

