Numerical linear algebra

Purdue University
CS 51500
Fall 2019
Fall 2020
David Gleich
David F. Gleich

Call me ... “Prof Gleich” “Dr. Gleich”

Please not “Hey matrix guy!”
Numerical linear algebra

Or

Matrix computations
Purpose

Matrix computations underlie much (most?) of applied computations.

It’s the language of computational algorithms.
PageRank (from the paper)

\[
\begin{align*}
R_0 &\leftarrow S \\
\text{loop :} & \\
R_{i+1} &\leftarrow AR_i \\
d &\leftarrow \|R_i\|_1 - \|R_{i+1}\|_1 \\
R_{i+1} &\leftarrow R_{i+1} + dE \\
\delta &\leftarrow \|R_{i+1} - R_i\|_1 \\
\text{while } \delta > \epsilon
\end{align*}
\]
3. The Generalized Method

In this method (Broyden, 1967) the vector \(p_i \) is given by

\[
p_i = -H_if_i,
\]

(3.1)

where \(H_i \) is positive definite. \(H_i \) is chosen to be an arbitrary positive definite matrix (often the unit matrix) and \(H_{i+1} \) is given by

\[
H_{i+1} = H_i - H_iy_iw_i^T + p_i t_i q_i^T, \quad i = 1, 2, \ldots,
\]

(3.2a)

where

\[
y_i = f_{i+1} - f_i,
\]

(3.2b)

\[
q_i^T = \alpha_ip_i^T - \beta_iy_i^TH_i,
\]

(3.2c)

\[
w_i^T = \gamma_iy_i^TH_i + \beta_it_ip_i^T,
\]

(3.2d)

\[
\alpha_i = (1 + \beta_iy_i^TH_iy_i)/p_i^Ty_i,
\]

(3.2e)

\[
\gamma_i = (1 - \beta_it_ip_i^Ty_i)/y_i^TH_iy_i.
\]

(3.2f)

The parameter \(\beta_i \) is arbitrary and setting it equal to zero gives the DFP method (Fletcher & Powell, 1963). It was shown by Broyden (1967) that the matrices \(H_i \) constructed in this way are always positive definite if \(\beta_i \geq 0 \).
Circular antennae design

B. Port Description of Array

Since relatively few of the elements of \(V \) are nonzero some reduction in (3) is possible. Only those columns of \(Y \) which correspond to indices of triangles centered at the dipole mid-points need be retained in (3); denote as \(Y_R \) the rectangular matrix obtained by deleting all columns of \(Y \) not having such a column index. Then,

\[
I = Y_R V_T
\]

(8)

where \(V_T \) is the \(N \) vector formed by deleting all identically zero elements of \(V \). \(Y_R \) is denoted the "reduced admittance matrix."

Furthermore, if only the feed-point currents are of interest, a similar reduction may be performed on rows of \(Y_R \) and \(I \) to yield,

\[
I_T = Y_T V_T
\]

(9)
Dynamic mode decomposition

1. Split the time series of data in V_1^N into the two matrices V_1^{N-1} and V_2^N.
2. Compute the SVD of $V_1^{N-1} = U\Sigma W^T$.
3. Form the matrix $\tilde{S} = U^T V_2^N W \Sigma^{-1}$, and compute its eigenvalues λ_i and eigenvectors y_i.
4. The i-th DMD eigenvalues is the λ_i and the i-th DMD mode is the Uy_i.
Electrical circuits

“A matrix version of Kirchhoff’s circuit law is the basis of most circuit simulation software”

-- Wikipedia
Other applications

Biology
PDEs/Mechanical Engineering/AeroAstro
Machine learning
Statistics
Graphics
Purpose

The purpose this class is to teach you how to “speak matrix computations like a native” so that you can understand, implement, interpret, and extend work that uses them.
Examples

Why should we avoid the “normal equations”?

Why do I get strange looks if I talk about the SVD of a symmetric positive definite matrix?

Why not write things element-wise?
Please pay attention for a second, this next bit is important!
The new class schedule

Basic Problems
• Least Squares, Linear Systems, Singular Values, Eigenvalues, Sparse Matrices,
Simple Algorithms
• Gradient descent, power method
• Convergence analysis
Finite Termination
• Coordinate fixing -> Cholesky
• LU with pivoting
• QR factorization
Conditioning & Stability (after midterm)
• How to choose algorithms?
Advanced Problems
• Sequences of linear systems
• Generalized eigenvalue problems
Krylov Methods
• Arnoldi, Lanczos
Eigenvalue algorithms
• All eigenvalues
• Some eigenvalues
Getting high performance, randomized?
Why did I change this?

• One weakness of a classic presentation is that it discourages interplay between pre/post midterm.

• The new presentation makes the class more exciting and highlights the interplay between materials.

• One downside, it doesn’t really follow an existing book.
Textbooks

No **best** reference.

Golub and van Loan – “The Bible” – but sometimes a bit terse

Trefethen & Bau, Numerical Linear Algebra
Demmel, Applied Numerical Linear Algebra
Saad, Iterative Methods for Sparse Linear Systems
Background books

Strang, Linear Algebra and its Applications
Meyer, Matrix Analysis
Why I like Julia & Matlab

Julia Designed as a technical computing language

Matlab it’s a modeling language for matrix methods!

The power method described in Wikipedia

\[b_{k+1} = \frac{A b_k}{\|A b_k\|} . \]

while 1
 a = b;
 b = A*b;
 b = b/norm(b);
 if test_converge(a,b); break; end
end

Matlab & Julia code

```matlab
x = b # make a reference to A
y = zeros(length(b)) # allocate
while 1
  A_mul_B!(y,A,x) # y = Ax
  scale!(y,1/norm(x)) # scale
  if test_converge(x,y); break; end
  x,y == y,x # swap pointers
end
```

Super efficient Julia code

```julia
b_{k+1} = \frac{A b_k}{\|A b_k\|}.
```

while 1
 a = b;
 b = A*b;
 b = b/norm(b);
 if test_converge(a,b); break; end
end
Software

You will have to write matrix programs in class.

Julia & Atom my recommendation (what I use!)
Julia & Jupyter notebook my 2\(^{nd}\) recommendation
Julia & Text Editor (your call!)

Matlab what I used to use
SciPy, NumPy okay (look at spyder/pythonxy)

R not recommended, best to avoid
Scilab you’re on your own
C/C++ with LAPACK okay, but ill-advised
Fortran (same!)
THE SYLLABUS
Cut to website!

www.cs.purdue.edu/homes/dgleich/cs515-2020
Quiz

• Write down any questions, concerns, issues, etc. you think you have after hearing about the class logistics.