
purdue university · cs 51500
matrix computations

HOMEWORK
David F. Gleich
August 27, 2018

Homework 1

Please answer the following questions in complete sentences in a clearly prepared
manuscript and submit the solution by the due date on Blackboard (around
Sunday, September 2nd, 2018.)

Remember that this is a graduate class. There may be elements of the problem
statements that require you to fill in appropriate assumptions. You are also
responsible for determining what evidence to include. An answer alone is rarely
sufficient, but neither is an overly verbose description required. Use your judge-
ment to focus your discussion on the most interesting pieces. The answer to
“should I include ‘something’ in my solution?” will almost always be: Yes, if you
think it helps support your answer.

Problem 0: Homework checklist

• Please identify anyone, whether or not they are in the class, with whom
you discussed your homework. This problem is worth 1 point, but on a
multiplicative scale.

• Make sure you have included your source-code and prepared your solution
according to the most recent Piazza note on homework submissions.

Problem 1: Operations

Compute the following by hand or using Julia. The vector e =
[
1 . . . 1

]T
(i.e. the all ones vector).

1.

 1 1 2
3 5 8
13 21 34

 1 −2 3
−4 5 −6
7 −8 9

 = ?

2. x = ones(1000,1) y = 1:1000 xT y = ?

(Optional extra question – worth no points – who is always credited with
discovering a very efficient way to compute this as a child?)

Numpy users x = ones((1000,1)) y = arange(1.,1001.)[:, newaxis]'

3. x =
[
1.5 2 −3

]T . (Assume e is 4× 1.)
exT =?
xeT =?

4. x =
[
−5 4 2

]T . (Assume ei is 3× 1.) e1xT =?
xeT

3 =?

1



Problem 2: A proof

Let A and C be invertible matrices. We’ll prove that the inverse of
[
A B
0 C

]
is

easy to determine!

1. Show that the inverse of [
1 a
0 1

]
is [

1 −a
0 1

]
.

2. Now, show that the inverse of [
I A
0 I

]
is [

I −A
0 I

]
.

3. Recall that for general A and B, not those in the problem!, (AB)−1 =
B−1A−1. Use this fact, and the result of problem 2.2 to determine the

inverse to
[
A B
0 C

]
when A and C are invertible. Alternatively, give the

inverse of
[
A B
0 C

]
. Hint: think about diagonal matrices!

Problem 3: Simplifying a matrix expression

The following derivation occured when I was working on a proof with a student
that we recently used in a research paper. We have an expression:

q(x) = Diag((I −H)x) · (I + H)x

where H is a square, non-negative matrix and

Diag(z) =


z1 0 . . . 0
0 z2 . . . 0

. . .
0 . . . 0 zn


(which is a diagonal matrix where z is on the diagonal). We needed to show that:

yT q(x) = xT Cx

for some matrix C that depends on y. Your goal in this problem is to work out
an expression for C.

This entire problem can be done element-wise, but the proof and results are fairly
simple if you embrace matrix notations.

1. (Very easy.) As a warm-up, show that if F and G are square diagonal
matrices, then F G = GF .

2. Show that q(x) = Diag(x)x−Diag(Hx)Hx. (Note that you need to use
some properties of diagonal matrices in order to show this.)

3. Write an expression of C in terms of y using the simplified version from
part 2.

2



Problem 4: Deep neural nets

This problem will be more difficult if you haven’t used Julia or Matlab
before, so get started early! It’s designed to teach you about writing
for loops to construct a matrix operation for a particular task.

Deep neural networks for image recognition are a new technology that demon-
strates impressive results. In this problem, we will build matrices that let us
simulate what would happen for a random deep neural net.

A deep neural network is a sequence of matrix-vector products and non-linear
functions. Let x represent the input to the neural net. Then a deep net computes
a function such as:

deepnet(x) = f(W k · · · f(W 3f(W 2f(W 1x))) · · · )

where f is a non-linear function and W i is a weight matrix where W i has fewer
rows that columns. (So the output of W ix is a smaller vector than the input.)
These are called deep neural networks because the number of layers k is usually
large (hundreds). A popular choice for f is the function:

f(x) =
{

x x > 0
0 x ≤ 0

which is called the ReLU (rectified linear unit). (These units model a “neuron”
that “activates” whenever x is positive and is non-active when x is non-positive.)
Also, the function could vary with the layer. Other choices involved in deep
neural net architecture are: * how many layers (or how many functions and weight
matrices)? * what is the shape of a weight matrix? We don’t wish to get into
too many of the details here. We are going to have you evaluate a simple neural
network architecture.

Given an input image as a 32× 32 pixel image, where each pixel is a real-valued
number between 0 and 1, we want to simulate the following neural network
architecture:

ournet(x) = f(W 3f(W 2f(W 1x)))

where

• W 1 is a 256× 1024 matrix that is a rudimentary edge-detector, the result
of f(W 1x) should be large if there is an edge (see below for how to do this);

• f is a ReLU unit;
• W 2 is another 64× 256 matrix which is the same type of edge detector.
• W 3 is a 1×64 matrix that simply sums the output of all the inputs. (Hence,

W 3 = eT where e ∈ R64.)

So the challenge here is to build W 1 and W 2. As mentioned, these are extremely
crude edge-detectors. (There are much better things you can do, but I wanted to
keep this fairly simple.)

We’ll illustrate the construction of our edge detector with a 4× 4 image. Suppose
this input is represented by a matrix:

input =


x1 x5 x9 x13
x2 x6 x10 x14
x3 x7 x11 x15
x4 x8 x12 x16

 .

What we want to do is output a 2× 2 result:

output =
[
y1 y3
y2 y4

]
3



where
y1 = x1 + x6 − x5 − x2

y2 = x3 + x8 − x7 − x4

y3 = x9 + x14 − x13 − x10

y4 = x11 + x16 − x15 − x12

This particular formula comes from applying a 2× 2 computational stencil:[
+ −
− +

]
to each 2 × 2 region of the input image to reduce it to a single number. (As
mentioned a few times, if this number is positive, it means there is an edge or
high-contrast region somewhere inside that 2× 2 block, but there are much better
ways to solve this problem! This is really just a simple example.)

Now, I described the input and output in terms of matrices above. However, the
deep neural network architecture works with a vector input and produces a vector
output. So we have to rework this a little bit.

1. Note that the input and output matrices have a linear ordering x1, . . . , x16
and y1, . . . , y4. Let x ∈ R16 and y ∈ R4. Write down the matrix A such
that y = Ax.

2. We will want to run this on real images. Download

• http://www.cs.purdue.edu/homes/dgleich/cs515-2018/homeworks/
image1.png

• http://www.cs.purdue.edu/homes/dgleich/cs515-2018/homeworks/
image2.png

• http://www.cs.purdue.edu/homes/dgleich/cs515-2018/homeworks/
image3.png

(Before you do the next step, you may have to add the following packages)

using Pkg; Pkg.add(["Images","FileIO","ImageMagick"]) # on Linux
using Pkg; Pkg.add(["Images","FileIO","QuartzImageIO"]) # on OSX

Load these images in Julia and convert them into matrices.

using FileIO, Images
X1 = Float64.(load("image1.png"))
X2 = Float64.(load("image2.png"))
X3 = Float64.(load("image3.png"))

Report the result of

using LinearAlgebra
tr(X1+X2+X3) # this computed the trace

If you wish to look at the images (not required) then run

colorview(Gray, X1)

Alternatively, you can use

using Plots
pyplot()
heatmap(X1,yflip=true, color=:gray)
gui()

3. In what follows, we’ll talk about two different types of indices. The image
index of a pixel is a pair (i, j) that identifies a row and column for the pixel
in the image. The vector index of a pixel is the index of that pixel in a

4

http://www.cs.purdue.edu/homes/dgleich/cs515-2018/homeworks/image1.png
http://www.cs.purdue.edu/homes/dgleich/cs515-2018/homeworks/image1.png
http://www.cs.purdue.edu/homes/dgleich/cs515-2018/homeworks/image2.png
http://www.cs.purdue.edu/homes/dgleich/cs515-2018/homeworks/image2.png
http://www.cs.purdue.edu/homes/dgleich/cs515-2018/homeworks/image3.png
http://www.cs.purdue.edu/homes/dgleich/cs515-2018/homeworks/image3.png


linear ordering of the image elements. For instance, in the sample from part
1, pixel (3,2) has linear index 7. Also, pixel (1,4) has index 13. Julia can
help us built a map between pixel indices and linear or vector indices:

N = reshape(1:(4*4), 4, 4)

This creates the pixel index to linear index for the problem above because

N[1,4]
N[3,2]

return the appropriate entry.

In your own words, explain what the reshape operation does.

4. Now we need to construct the matrix W i in order to apply the edge detector
that we’ve build.
I’m giving you the following template, that I hope you can fill in. Feel free
to construct W 1 and W 2 any way you choose, but the following should
provide some guidance.

function crude_edge_detector(nin,nout)
Nx = <fill in> # build a map using reshape that takes X indices to x
Ny = <fill in>
W = zeros(nout^2,nin^2)
for i=1:nin

for j=1:nin
xi = <fill in>
yj = <fill in>
W[yj, xi] = <fill in>

end
end
return W

end

W1 = crude_edge_detector(32,16)
W2 = crude_edge_detector(16,8)

Show the non-zero entries in the first row of W 2 as well as the corresponding
indices.

5. Now write a function to evaluate the neural net output on an image that we
explained above. Note, your code should not recompute the edge detectors
W1 and W2 each time, doing so will lose 1/3 the points on this question.

function net(x)
<fill in multiple lines>

end

To call net, we need convert an image into a vector. You can use the
reshape command to do this, or in Julia, you can use the vec command
too.

Show the results of the following commands

@show net(vec(Float64.(load("image1.png"))))
@show net(vec(Float64.(load("image2.png"))))
@show net(vec(Float64.(load("image3.png"))))

(Hint, I get net(vec(Float64.(load("image1.png")))) = 0.08235294117647171)
The original images can be accessed from

• https://c1.staticflickr.com/8/7015/6554001581_3370ca8802_b.jpg
• https://c1.staticflickr.com/3/2880/33053003793_5840a879fb_b.jpg

5



• https://c1.staticflickr.com/5/4138/4814209463_10a00d0b2d_b.jpg

Do these results make sense?

6. Now suppose we change the edge detector to use the stencil[
− +
+ −

]
instead. Show the output from the same neural net architecture using the
new matrices W1 and W2.

7. The matrices W 1 and W 2 have very few entries compared to the number of
zeros. This is a case where we could consider using sparse matrices instead
of dense matrices. One efficient way of creating a sparse matrix in Julia
is to produce a list of the elements that are non-zero, and then to use the
matrix. Write the following function

using SparseArrays
function sparse_crude_edge_detector(nin,nout)

Nx = <fill in> # build a map using reshape that takes X indices to x
Ny = <fill in>
nnz = <fill in> # this is the number of non-zeros
I = zeros(Int, nnz) # the row index
J = zeros(Int, nnz) # the column index
V = zeros(nnz) # the value
index = 1
for i=1:nin

for j=1:nin
I[index] = <fill in>
J[index] = <fill in>
V[index] = <fill in>
index += 1

end
end
return sparse(I,J,V,nout^2,nin^2)

end

Write this function and make sure that the result is equivalent to what you
got with your original function.

sW1 = sparse_crude_edge_detector(32,16)
W1 = crude_edge_detector(32,16)
sW1 == W1 # test for equality

8. Let x = vec(Float64.(load("image1.png"))). Then show the time to
compute W1*x vs. sW1*x. (In Julia, this is @time). Repeat this a few times
to make sure you have the correct time. Report the fastest time for each.

6


	Homework 1
	Problem 0: Homework checklist
	Problem 1: Operations
	Problem 2: A proof
	Problem 3: Simplifying a matrix expression
	Problem 4: Deep neural nets


