In this lecture, we’ll look into the inverse of a matrix, and find out which matrices are invertible. These notes roughly follow Trefethen and Bau, section 1.

Background

Let \(A \in \mathbb{R}^{m \times n} = [a_1 \cdots a_n] \). Recall that

\[
\begin{align*}
\text{range}(A) &= \text{span}(a_1, \ldots, a_n), \\
\text{rank}(A) &= \dim(\text{range}(A)).
\end{align*}
\]

We call \(A \in \mathbb{R}^{m \times n} \) full rank if \(\text{rank}(A) = \min(m, n) \).

Full rank matrices

Full rank matrices have the important property that they give rise to one-to-one maps between \(\mathbb{R}^n \) and \(\mathbb{R}^m \). Let’s show this.

Theorem (From Trefethen and Bau, Theorem 1.2) Let \(m \geq n \), a matrix is full rank if and only if it maps no two distinct vectors to the same vector.

Proof If a matrix is full rank, then it has \(n \) linearly independent column vectors. These vectors are a basis for \(\text{range}(A) \). This, in turn, implies that any vector in \(\text{range}(A) \) has a unique representation in this basis. (If not, then \(A c_1 = A c_2 \) and so \(A \) has linearly dependent columns, which it can’t!) Thus, any vector \(Ay \) corresponds to a unique \(y \).

We also have to prove the reverse direction, but this is easier to prove via the contrapositive. If \(A \) is not full rank, then it’s columns are linearly dependent. Hence, there exists a vector \(c \) such that \(A c = 0 \). Let \(y \) be any vector in \(\mathbb{R}^n \), then \(Ay = A(y + c) \) and so we have two distinct vectors that give us the same result.

There’s a great picture I could put here, but it’s too tricky. The point is that we have a one-to-one map between \(\mathbb{R}^n \) and \(\text{range}(A) \), which is a subset of \(\mathbb{R}^m \) when \(m \geq n \). Because this map is one-to-one, it’s invertible! So we can take any vector \(b \in \text{range}(A) \) and find

\[
Ax = b
\]

for some \(x \in \mathbb{R}^n \).

Linear systems

It’s worth repeating this equation because it’s so fundamental to the rest of the class – and the entire field.

We call

\[
Ax = b
\]

a linear system of equations.

Usually these are defined with squares matrices \(A \).
Square, full rank matrices

Let \(A \in \mathbb{R}^{n \times n} \) be a full-rank matrix. What we’ve shown above is that any vector in \(\mathbb{R}^n \) can be written as \(Ax \) for some unique \(x \).

Thus, we can find the following \(n \) vectors:

\[
Ax_i = e_i, \quad i = 1, \ldots, n.
\]

If we write this as a matrix equation, we have:

\[
AX = I.
\]

The matrix \(X \) is called the inverse and usually written \(A^{-1} \).

The matrix inverse

We’ve shown that \(A \in \mathbb{R}^{n \times n} \) and full rank has an inverse \(A^{-1} \) such that

\[
AA^{-1} = I.
\]

Let’s study a few properties of this inverse.

First, does \(A^{-1}A = I \) too? We’ll show this is the case. Let \(AX = I \) and let \(YA = I \). Then

\[
YAX = (YA)X = X,
\]

but also

\[
YAX = Y(mAX) = Y.
\]

Thus, \(X = Y \).

Second, \((AB)^{-1} = B^{-1}A^{-1} \) assuming that \(A \) and \(B \) are square. The standard way to check that you have the inverse of a particular matrix is just to show that it satisfies \(AX = I \). In this case:

\[
(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = (AA^{-1} = I).
\]

where we’ve canceled all the inverse pairs represented by parentheses.

When is a matrix full rank?

The following set of statements from Trefthen and Bau helps to characterize when a matrix has an inverse. Let \(A \in \mathbb{R}^{n \times n} \), these statements are all equivalent to each other:

1. \(A \) has an inverse \(A^{-1} \)
2. \(A \) has rank \(n \)
3. range(\(A \)) = \(\mathbb{R}^n \).
4. (not fully covered) null(\(A \)) = \{0\} (null is the nullspace).
5. (not fully covered) 0 is not an eigenvalue of \(A \)
6. (not fully covered) 0 is not a singular value of \(A \)
7. (not fully covered) \(\det(A) \neq 0 \)
Solving a linear system

Let $A \in \mathbb{R}^{n \times n}$ be full-rank. Then the linear system:

$$Ax = b$$

has solution

$$x = A^{-1}b.$$

Be warned, this is not a good way to find x unless A is very special. In this class, we will see many superior procedures to find x that satisfies this linear system. A good way to demonstrate that you have not learned the material is to utilize this idea in your programs.