
THEORY AND METHODS FOR ONE -STEP ODES

David F. Gleich
April 20, 2021

�ese notes are based on sections 5.3, 5.4, 5.5,
5.6, and 5.7 in Gautschi’s Numerical Analysis
textbook..the problem

We are considering numerical methods for the initial value problem:

dy
dt

= f(t, y) y(0) = y0 , t ∈ [0, T]. (1)

where f is continuous and outputs an Rd vector.

existence and uniqueness

THEOREM 1 (Gaustchi, p.331, Theorem 5.3.1) 1 Assume that f(t, y) is continuous in the �rst vari- 1 �is theorem is called the Picard-Lindelöf
theorem,https://en.wikipedia.org/wiki/
Picard%E2%80%93Lindel%C3%B6f_theorem

able (t) in the range [0, T] and with respect to the second variable (y), we satisfy a uniform
Lipschitz condition:

∥f(t, y1) − f(t, y2)∥ ≤ L∥y1 − y2∥ , t ∈ [0, T], y1 , y2 ∈ R
d .

(�e norm can be arbitrary)�en the problem (1) has a unique solution y(t), 0 ≤ t ≤ T for
arbitrary y0 and the solution depends continuously on y0.

�e only hard part about this statement is the Lipschitz condition. �is is called
Lipschitz continuity too.2 2 See Wikipedia https://en.wikipedia.org/

wiki/Lipschitz_continuity.

Intuitive Figure of Lipschitz

It’s actually really hard to satisfy.�e functions f (x) = x2 and f (x) = ex do not satisfy
this requirement for all R. But sin(x) and cos(x) do.�e reason these functions are okay
is that they are nicely behaved for all input x, whereas x2 and ex are “in�nitely” steep as
x →∞.

A slightly weaker condition is locally Lipschitz, which would su�ce for the uniqueness
part, but not existence.�e reason is that it’s possible for y(t)→ ±∞ in �nite time.�is
would prohibit having a solution for an arbitrary time T .3 3 http://math.stackexchange.com/

questions/1441492/is-local-lipschitz-

continuity-sufficient-for-an-ode-to-

have-a-unique-solution

EXAMPLE 2 �at page has a great example, which is

dy/dt = y2 , y(0) = 1, then y(t) = 1/(1 − t).

�is function does not exist at t = 1.

Also, it turns out that continuity is not required for existence.�is is handled by the
Carathéodory theorem.4 4 https://en.wikipedia.org/wiki/Carath%

C3%A9odory%27s_existence_theoremBut su�ce it to say, for this class, we can assume things are pretty nice!

1

https://en.wikipedia.org/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem
https://en.wikipedia.org/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem
https://en.wikipedia.org/wiki/Lipschitz_continuity
https://en.wikipedia.org/wiki/Lipschitz_continuity
http://math.stackexchange.com/questions/1441492/is-local-lipschitz-continuity-sufficient-for-an-ode-to-have-a-unique-solution
http://math.stackexchange.com/questions/1441492/is-local-lipschitz-continuity-sufficient-for-an-ode-to-have-a-unique-solution
http://math.stackexchange.com/questions/1441492/is-local-lipschitz-continuity-sufficient-for-an-ode-to-have-a-unique-solution
http://math.stackexchange.com/questions/1441492/is-local-lipschitz-continuity-sufficient-for-an-ode-to-have-a-unique-solution
https://en.wikipedia.org/wiki/Carath%C3%A9odory%27s_existence_theorem
https://en.wikipedia.org/wiki/Carath%C3%A9odory%27s_existence_theorem


grid approximations

�e methods we will consider in this class are all grid-approximations of the function
y(t).�at is, we consider

y(t) ≈ y(0), y(t1), . . . , y(tN) tN = T

and usually uniformly spaced grids where t i = ih for some h = T/N . Notation
N is the number of “time-steps”
h = T/N is the grid-size
y i = y(t i) is shorthand.

Let y i = y(t i) for convenience.

spectral approximations

We’ll see spectral approximations, where we represent y i(t) as a polynomial, soon!

one-step methods

We have seen two methods already.

Method (Alternate Name) Update equation

Forward Euler Explicit Euler y i+1 = y i + hf(ih, y i)
Backward Euler Implicit Euler Solve y i+1 = y i + hf((i + 1)h, y i+1)

My names for these are explicit �rst-order extrapolation (instead of forward Euler) or
forward di�erence extrapolation (instead of forward Euler) and implicit backward di�er-
encing (instead of backward Euler).�ese are both one-step methods that relate y i+1 to
y i .

For the moment, we’ll only consider explicit methods, those that do not depend on
solving systems of equations such as the Backward or Implicit methods.

In general, a one-step method is5 5 �e notation Φ(t, y; h) just means that
Φ is a function that knows the value of h,
but can do essentially anything with that
information. My take, it is not a function
of h in the mathematical sense, but it is a
function of h in the computer science sense
or algorithm sense.�is notation is o�en
used to describe “parameters” that are some
how “outside” of the approximation problem
itself.

y i+1 = y i + hΦ(ih, y i ; h).

Which we’ll also write as:
y
+
= y + hΦ(t, y; h)

to avoid the index i and make it slightly more general.
For explicit Euler, Φ = f(t, y).
�e idea with Φ is that we should locally approximate the initial value problem

du
dτ

= f(τ, u), t ≤ τ ≤ t + h, u(t) = y

Intuitive Figure of One-step methods

2



error analysis: local truncation

Now it’s time to talk error! Here, we’ll use u(τ) as the reference solution. We want to
get as close as possible to this!

DEFINITION 3 �e truncation error of the method Φ with respect to u is:

T(t, y; h) = 1
h
(y

+
− u(t + h)).

�is is how much we are di�erent than the true solution. We can use our function Φ to
write:

T(t, y; h) = Φ(t, y; h) − 1
h
[u(t + h) − u(t)].

· A method is consistent if T(t, y; h) → 0 as h → 0 for all t, y in some domain,
uniformly.

· Consistency is equivalent to Φ(t, y; 0) = f(t, y).

· A method has order p if (for some vector norm) ∥T(t, y; h)∥ ≤ Chp for some
constant.

�e �nal concept we’ll use is the principal error function.�is is a function θ such that:

T(t, y; h) = θ(t, y)hp + O(hp+1) h → 0.

so that θ is the leading term of the error function and we require θ /= 0 at all points.

Notes �is analysis is all local, just in the region around one point in space and time.
We’ll see global analysis later.

methods

FORWARD EULER
We already saw this, let’s study its error.
Since Φ(t, y; h) = f(t, y), it’s clear that the method is consistent.

�e method has order 1.

3



TAYLOR EXTRAPOLATION
Recall that we could derive forward Euler by approximating:

dy
dt

≈ 1/h(y i+1 − y i).

We could also have used a di�erent type of approximation based on the Taylor series:

y(t + h) ≈ y(t) + hy′(t) + O(h2)

and then solving for y(t + h) given that y′(t) = f(t, y(t)).�is suggests that we could use
higher-order Taylor expansion:

y(t + h) ≈ y(t) + hy′(t) + h2/2y′′(t) + h3/6y′′′(t) + O(h4).

Intuitive Figure of Taylor approximation

In this method, we use additional terms from the Taylor series and use:

Φ(t, y; h) = f(t, y) + 1
2
hf ′(t, y) + 1

3!
h2f ′′(t, y) + . . . + 1

p!
hp−1f[p−1](t; y).

�is method is order p.
�is method require additional derivatives of the function f , which may be hard get.

IMPROVING EULER WITH TWO-STAGE METHODS.

Intuitive Figure of Mid-point Euler and Heun’s method

�e idea here is that explicit Euler is too aggressive. We need something better!
So we follow the derivative given by Euler for h/2 time, then update our estimate of

the derivative, and “go-back” and follow that over the entire time-span.

1. Go forward in time h/2: y(t + h/2) ≈ y(t) + h/2f(t, y(t))

2. Get the derivative at t + h/2: p ≈ f(t + h/2, y(t + h/2))

4



3. �en follow p over the entire span: y
+
= y + hp.

We can wrap this into:

y
+
= y + hf(t + h/2, y + h/2f(t, y)),

which is a one-step method with

Φ(t, y; h) = f(t + h/2, y + h/2f(t, y)).

As h → 0, again, we get consistency.
In this case, we could also have gone to t+ h, and taken the average of the slopes which

gives Heun’s method.
�is suggests a general scheme.

1. Compute k1, the slope at y, t

2. Compute k2, the slope at some point t + µh in between t, t + h based on k1

3. �en use Φ = α1k1 + αk2.

�is gives 3 parameters; α1 , α2 , µ. We can optimize over these parameters to seek the
higher-order method!

�e book does all the analysis here in grueling detail. It involves a number of steps of
Taylor’s analysis. But the important point is that we get an order 2 method if:

α1 + α2 = 1 and α2µ = 1/2.

So this handles the mid-point Euler method and Heun’s method nicely.

RUNGE-KUTTA SCHEMES
�emost general scheme are the RK (Runge-Kutta) integrators.�ese take the previous

idea to a general setting.

Φ(t, y; h) =
r
∑
s=1

αsks

k1 = f(t, y)

ks = f(t + µs , y + h
s−1
∑
j=1

λs jk j).

Here, we have µs = ∑s−1
j=1 λs j and∑ αs = 1.

�rough some extensive analysis, the method has error of order r for 1 ≤ r ≤ 4. If
r = 8 or r = 9, then we can get order 6 and order 7 methods.

For instance, the classic formula is order 4 with:

Φ(t, y; h) = 1
6
(k1 + 2k2 + 2k3 + k4)

k1 = f(t, y)
k2 = f(t + h/2, y + h/2k1)
k3 = f(t + h/2, y + h/2k2)
k4 = f(t + h, y + hk3)

software

Matlab’s ODE suite implements:6 6 For more see, http://blogs.mathworks.
com/cleve/2014/05/26/ordinary-

differential-equation-solvers-ode23-

and-ode45/
1. ode45: 4th-order method (best general choice)

5

http://blogs.mathworks.com/cleve/2014/05/26/ordinary-differential-equation-solvers-ode23-and-ode45/
http://blogs.mathworks.com/cleve/2014/05/26/ordinary-differential-equation-solvers-ode23-and-ode45/
http://blogs.mathworks.com/cleve/2014/05/26/ordinary-differential-equation-solvers-ode23-and-ode45/
http://blogs.mathworks.com/cleve/2014/05/26/ordinary-differential-equation-solvers-ode23-and-ode45/


2. ode23: 2nd-order method

3. ode23s: 2nd-order method tuned for sti� problems using a Jacobian.

4. ode15s: 1st-order method tuned for sti� problem

�is was designed by Shampine and Bogacki.
Julia has a suite of ODE solvers that’s based on the same ideas as Matlab in the ODE

package.7 �e methods are the same as Matlab. 7 https://github.com/JuliaLang/ODE.jl

SciPy has many of the same methods implemented.8 8 http://docs.scipy.org/doc/scipy/

reference/generated/scipy.integrate.

ode.html

6

https://github.com/JuliaLang/ODE.jl
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html

