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�ese notes are based on sections 5.7, 5.8,
and 5.9 in Gautschi’s Numerical Analysis
textbook..

OUTLINE
In this set of notes, we’ll work towards getting estimates of the error involved in

approximating the solution of an ODE and also how we can use this to guide step size
selection dynamically. Finally, we’ll mention what a sti� problem is.

the problem

We are considering numerical methods for the initial value problem:

dy
dt

= f(t, y) y(0) = y0 , t ∈ [0, T]. (1)

where f is continuous and outputs an Rd vector.

approximation on grid functions

Let y(t) be the true solution. LetH be the grid de�ned by step-sizes: h1 , . . . , hN such
that

0 < t1 < . . . < tN
satis�es t i = ∑i

ℓ=1 h i .1 Let ∣H∣ = maxi h i .

1�is is just the obvious grid where h i =
t i − t i−1 . We are parameterizing it by the
step-sizes h i instead of times because h is
what shows up in the theory.Let yH be the value of y(t) at each of the points in the gridH. We think of this as a set

of vectors yk = y(tk), where each yk ∈ Rd .
Let ΓH be the space of grid-functions.2 Let z ∈ ΓH, then3 2 You can think of this as the space of d × N

matrices where each column is a time-step.
3�e choice of norm inside the max is arbi-
trary

∥z∥
∞
= max

i
∥zi∥ .

We can look at the di�erence between two grid functions via this norm:

∥z −w∥
∞
z,w ∈ ΓH

�is grid is missing the zero point.

EXAMPLE 1 0.0 0.2 0.4 0.5 0.6 0.65 0.7
t

y1

y2

H = (0, 0.2, 0.4, 0.5, 0.6, 0.65, 0.7)

yH = ([
1.5
0.5] , [

0.6
1.75] , [

1.1
0.9] , [

1.85
0.75] , [

1.9
1.1] , [

1.8
1.25] , [

0.85
1.35])

Notes on notation �e choice of grid is “given” by the space ΓH, so we can’t compare
functions drawn from di�erent grids.
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convergence of global error

In this set of notes, our goal will be to understand the following notion of error
convergence.

DEFINITION 2 (5.7.2) Let u be the result of approximating y(t) via a method Φ on a grid H.
�en we say that Φ converges if

∥u − yH∥∞ → 0 as ∣H∣ → 0.

the key point

�ere are two properties that will let us show convergence:

· Local consistency

· Global stability.

If a method Φ has both of these, then it will converge.
We saw local consistency in the last class, which just involves showing that as h → 0,

Φ(t, y; h) = f(t, y).

stability

�e idea with stability is that we want to make sure that if the method Φ sees a small
change, then it only makes a small change in the result.
LetH be an arbitrary grid and u be a function on that grid. �e system of equations

that an ODE with step Φ satis�es is

(RHu) = 0

where (RHu)i = 1
h i
(ui+1 − ui) −Φ(t i , ui ; h i) is a block of variables. 4 4 Show an example here of what we mean...

�is is just an example of that big block of
equations we solved for Forward Euler and
Backward Euler on our test problem.

Example of what is happening

Consider a grid function u and w that result from using a method Φ with u0 and w0
as the initial conditions. �en, a method is stable if

∥u −w∥
∞
≤ K(∥u0 −w0∥ + ∥RHu − RHw∥∞)

�is de�nition isn’t much fun to work with. So we show a su�cient condition

THEOREM 3 (5.7.1) If Φ(t, y; h) satis�es the Lipschitz condition

∥Φ(t, z; h) −Φ(t,w; h)∥ ≤ M∥z −w∥

for all 0 ≤ t ≤ T and 0 < h < h∗ and for all z,w. �en the method Φ is stable.

EXAMPLE 4 Consider the Forward Euler method applied to dy/dt = y2 with y(0) = 1.. �en,
if we use Forward Euler, we will get a �nite value at y(1). But the true value is in�nite, so
we do not satisfy a global error condition. (Of course, the singularity will be evident in the
plot, but this won’t con�rm that it exists in the true solution, but will give a strong hint.)

See Julia example!
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convergence

THEOREM 5 (5.7.2) If a method Φ is consistent and stable, then it converges. Moreover, if the
method Φ has order p, then the global error

∥u − yH∥∞ = O(∣H∣
p
).

step size control

While we have introduced the methods using a uniform step size, in practice, it is
usually helpful to have a variable step-size. One way of acccomplishing this is to estimate
the local truncation error function directly. �en we’ll adjust the local step-size to ensure
that the local truncation error stays small. �is will ensure we can use large steps when
possible and small steps when necessary. In the book, we’ll discuss embedded methods.

�e essential idea is to computationally (and coursely) estimate the principal error
function that results from locally using a time-step h.
Recall the principal error function. �is is a function θ such that:

T(t, y; h) = θ(t, y)hp
+ O(hp+1

) h → 0.

so that θ is the leading term of the error function and we require θ /= 0 at all points.
Consider two methods Φ1 and Φ2 such that Φ1 has error local truncation p and Φ2

has local truncation error p + 1 and look at the di�erence:

r(t, y; h) = 1
hp (Φ1(t, y; h) −Φ2(t, y; h)).

�is su�ces because:

Φ1(t, y; h) −
1
h
[u(t + h) − u(t)] = θ(t, y)hp

+ O(hp+1
)

Φ2(t, y; h) −
1
h
[u(t + h) − u(t)] = O(hp+1

)

�e key idea in making this work is to �nd pairs of methods that share many function
evaluations f . In the 60s, a number of individuals worked out pairs of Runge-Kutta
functions that do exactly this. Hence, ode45 uses a 5th order method to get the error
estimate on a 4th order method.
If we pick h i such that the local trunction error is always a constant, then we do get a

precise (but hard to compute) bound on the global error, that satisfy a linear relationship.
So here’s a strategy that works

1. At time step i

2. Estimate h i (use a larger value is the previous check passed on the �rst time),
otherwise, use the last value.

3. Compute ui+1 using h i and Φ.

4. Check ∥r∥ = ∥Φ1 −Φ2∥ and if ∥r∥ ≥ ε then decrease h i , and keep doing so until
the test passes.5 5 So we are saying that if we don’t change

the answer much by using a higher-order
method, then we have su�cient accuracy at
this point.stiff problems

Some ODE problems are called sti� what this means is that we have multiple features.
A common scenario is some time of slowly changing function but also something that
oscillates really quickly. A good example would be the global climate. We have daily
�uctuations in global temperature (at each point) and then also long-term climate shi�s.
But these features are even present in simple linear ODEs. (See the Julia example)
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