These notes are based on Chapter 2 in Gautschi's Numerical Analysis textbook.

POLYNOMIAL INTERPOLATION FACTS

Given a distinct set of points or nodes x_{0}, \ldots, x_{n}, and a value f_{0}, \ldots, f_{n} at each point, there is a unique polynomial of degree n that interpolates the values f at those points.

The Lagrange form of the polynomial is

$$
p_{n}(x)=\sum_{i=0}^{n} f_{i} \ell_{i}(x) \quad \ell_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}
$$

The error in this expression (for a sufficiently smooth function f) is

$$
p_{n}(x)-f(x)=\frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{j=0}^{n}\left(x-x_{j}\right)
$$

Alternative ways to write the polynomial include: the Barycentric form and the Newton interpolant.

The Newton form is nice when we need to consider using derivative information in the interpolation.

The idea motivating Hermite interpolation is that $f\left[x_{0}, \ldots, x_{k}\right]=\frac{1}{k!} f^{(k+1)}\left(x_{0}\right)$ in the limit as all the points go together.

ADDING A POINT TO NEWTON

Consider what happens when adding a point to a Newton interpolation.
Here, we use the recursive form of the Newton Polynomial

$$
p_{n}(x)=p_{n-1}(x)+a_{n}\left(x-x_{0}\right) \cdots\left(x-x_{n}-1\right)
$$

Then if we add a new point t we get

$$
p_{n+1}(x)=p_{n}(x)+f\left[x_{0}, \ldots, x_{n}\right] \prod_{i=0}^{n}\left(x-x_{i}\right) .
$$

We then know that

$$
p_{n+1}(t)=f(t)=p_{n}(t)+f\left[x_{0}, \ldots, x_{n}\right] \prod_{i=0}^{n}\left(t-x_{i}\right)
$$

Then we can write

$$
f(t)-p_{n}(t)=f\left[x_{0}, \ldots, x_{n}\right] \prod_{i=0}^{n}\left(t-x_{i}\right)
$$

This is the error expression at t. (Except, this depends on $f(t)$ so this isn't saying much.)
But for a sufficiently smooth f we have

$$
f(t)-p_{n}(t)=f\left[x_{0}, \ldots, x_{n}\right] \prod_{i=0}^{n}\left(t-x_{i}\right)=\frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{j=0}^{n}\left(x-x_{j}\right)
$$

for some ξ in the region containing the x 's.

MOVING THE POINTS TOGETHER

The idea motivating Hermite interpolation

A QUICK EXAMPLE

The key fact is that we wish to replace

$$
f[\underbrace{x_{i}, \ldots, x_{i}}_{n+1 \text { times }}]=\frac{1}{n!} f^{(n+1)}\left(x_{i}\right) .
$$

so

$$
f\left[x_{i}, x_{i}\right]=f^{(1)}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right)
$$

and

$$
f\left[x_{i}, x_{i}, x_{i}\right]=\frac{1}{2} f^{(2)}\left(x_{i}\right)=f^{\prime \prime}\left(x_{i}\right)
$$

(a good to remember the coefficients is just Taylor series!)

- $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$
- f_{0}, f_{0}^{\prime}
- f_{1}
- f_{2}
- $f_{3}, f_{3}^{\prime}, f_{3}^{\prime \prime}$
- f_{4}, f_{4}^{\prime}
- $f_{5}, f_{5}, f_{5}^{\prime \prime}, f_{5}^{\prime \prime \prime}$

Then we setup a table

x	f	
x_{0}	f_{0}	
x_{0}	f_{0}	f_{0}^{\prime}
x_{1}	f_{1}	X
x_{2}	f_{2}	X
x_{3}	f_{3}	
x_{3}	f_{3}	
x_{3}	f_{3}	
x_{4}	f_{4}	
x_{4}	f_{4}	
x_{5}	f_{5}	

