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�ese notes are based on Chapter 2 in
Gautschi’s Numerical Analysis textbook.

THE QUESTION OF CHAPTER 1
How do we represent numbers on a computer and how does this representation impact

what we might want to compute?

THE QUESTION OF CHAPTER 2
How do we represent mathematical functions on a computer?
�e following may seem like a silly question, but what is a function f on a computer?

· Is it?

1 function f(x)

2 return sin(100x)

3 end

· Is it?

1 f(x) = 100x - 500000 x^3 / 3 + 250000000 x^5 / 3

· Is it?

pushq %rax

imulq 100, %rdi, %rax

vcvtsi2sd %rax, %xmm0, %xmm0

movabsq sin, %rax

callq *%rax

popq %rax

retq

· Is it a picture of f ?

We assume we have oracle access to f and we can compute f (x) for some input.

LINEAR FUNCTIONS SPACES
�e key way we work with functions on the computer are through function spaces.

�ese allow us to represent functions as small sets of numbers. Just as �oating point values
limit what we can do with respect to real numbers, these functions spaces will also be
limited.
A linear function space Φ is an in�nite set of functions from R to R where
· f1 , f2 ∈ Φ Ô⇒ f1 + f2 ∈ Φ, and
· c f1 ∈ Φ for all c ∈ R.

Example�e set Φ = { f (x) = ax + b ∣ a, b ∈ R} is a linear function space.�is just
represents all line functions, so maybe this isn’t surprising at all. To check this ...

TODO in notes, check that multiplying by c gives us something else there. Check that
addition gives us something else in the set too.

�e key point is that we can represent an element in this in�nite function space by two
numbers: a, b.

1



OVERVIEW AND APPROXIMATION THEORY
To discuss how to represent functions on a computer, we consider best approximation

problems.
�is will involve comparing functions, for which, we need function norms and more

exotic things like weighted functions norms.

the best approximation problem for functions

We have a linear function space Φ = {ϕ i}
´¸¶

infinite set of functions

.

Given a function f , �nd ϕ such that ϕ ∈ Φ and f is as close to ϕ as possible. Note that this is very close to the chapter
1 problem of given x ∈ RR, �nd closest
x∗ ∈M.

To do this requires a measure of distance between functions.�is is a function norm.

AN INIT IAL IDEA FOR FUNCTION NORMS
Given f and д, and a region [a, b], how close are they? Well, �rst thought, just look at

f and д!

Sometimes this is called the eyeball norm!
∥f − g∥E

 

Ht

Of course, the computer can’t actually look at the pictures of the functions. So here is
a simple computational alternative.
Pick n points in [a, b], evaluate f and д at those points. Let x1 , . . . , xn be the points.

If we assemble these measurements into vectors, then we can simply compare the vectors!
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д(x1)
д(x2)
⋮

д(xn)
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⎥
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⎦

�en ∥u − v∥ is a simple measurement of distance between f and д.
�ere are issues with this idea, though. For instance, what points do we pick? How do

the distances change as we vary the number of points?

FUNCTION NORMS
Recall that, if we used the in�nity norm, then

∥u − v∥
∞
= max

i
∣ f (x i) − д(x i)∣.

If we take n →∞, then we simply look at all points between a and b.

DEFINITION 1 �e in�nity norm of a function is

∥ f ∥
∞
= max

a≤x≤b
∣ f (x)∣.
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�e in�nity norm distance between functions f and д is

∥ f − д∥
∞
= max

a≤x≤b
∣ f (x) − д(x)∣.

�is same idea also motivates the following norms

DEFINITION 2 �e 2-norm of a function is

∥ f ∥2 =

√

∫ b

a
∣ f (x)∣2 dx .

�e 2-norm distance between functions f and д is

∥ f − д∥2 =

√

∫ b

a
∣ f (x) − д(x)∣2 dx .

DEFINITION 3 �e 1-norm of a function is

∥ f ∥1 = ∫ b

a
∣ f (x)∣ dx .

�e 1-norm distance between functions f and д is

∥ f − д∥1 = ∫ b

a
∣ f (x) − д(x)∣ dx .

SIMPLE EXAMPLES
�ese allow us to address simple questions. Is f (x) = x a good approximation to

д(x) = x2 over a region around 1?
Let [1 − h, 1 + h] quantify the region around 1, then we are interested in

∥x2 − x∥2 =

√

∫ 1+h1−h
(x2 − x)2 dx = . . . wolfram alpha . . . =

√

2
5
h5 +

2
3
h3 .
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