David F. Gleich

February 11, 2021

In this lecture, we look at how we find the *best* computer approximation of a function. This will give us computational representations.

These notes are based on Chapter 2 in Gautschi's Numerical Analysis textbook.

THE PROBLEM SETUP

Given a function *f*, find $\phi \in Phi$ a linear function space.

What is f? f is simply what you are interested in working with! It could be something simple, like sin(x). Or it could be something complicated, like the amount of fuel used by a SpaceX rocket moving a satellite to a geostationary transfer orbit. That second function is much more complicated and I hope you agree it's possible to *simulate* the function for particular points in geostationary transfer orbit, but having any insight into the function "as a math expression" is hard.

A simple setting for linear functions spaces is as a linear combination of elementary functions. These are nice because we can represent elements in these function spaces with their coefficients

Example. Let $\pi_1(t), \ldots, \pi_n(t)$ be linearly independent functions. Then $\Phi = \{c_1\pi_1(t) + c_2\pi_2(t) + \ldots + c_n\pi_n(t) \mid c_i \in \mathbb{R}\}$

Linearly independent functions. (Or ?) In linear algebra with vectors, we have

 $\mathbf{v}_1,\ldots,\mathbf{v}_k$

are linearly independent, then $c_1\mathbf{v}_1 + \ldots + c_k\mathbf{v}_k = 0$ is true if and only if $c_1, \ldots, c_k = 0$. So the same definition also holds for functions A linearly independent set of functions is characterized by the property that the only way of representing the zero function f(t) = 0 is where all the scalar terms c_1, \ldots, c_k are zero.

LIMITING OUR CLASS OF FUNCTIONS

Now, the above setting is very general. We often look at standard classes. Two standard classes are

· polynomials for general problems

• trig functions for periodic domains

Why these two classes? Well, let's address polynomials first.

Polynomials are fairly easy to work with and reason about. They are linear combinations of monomials.¹

The second reason polynomials are helpful is the Weierstrauss approximation theorem.

WEIERSTRAUSS APPROXIMATION THEOREM

Let *f* be a continuous function on [-1, 1]. Fix $\varepsilon > 0$. Then there exists a polynomial *p* such that

 $\|f-p\|_{\infty} \leq \varepsilon.$

The proof is hard and intricate and not particularly relevant. But it relies on *morphing* between a simple function \hat{f} and the original continuous function f using a PDE. This is a heat flow PDE like you see in morphing animations. As we reverse this process, it's smooth (because it's a heat flow PDE) and super continuous. Each function at each step then has a convergence taylor approximation, i.e. a polynomial.

¹ Although this is a terrible way to work with them! Do not use monomial polynomial representations unless you have very small degree polynomials.

See Chapter 6 in Trefethen ATAP for more on this theorem.

SOLVING BEST APPROXIMATION PROBLEMS AND THE NORMAL EQUATIONS

Let Φ be linear function space with basis function π_i and coefficients c_i . Our goal is to find $\phi \in \Phi$, or equivalently, c_i , to represent an arbitrary function f.

Consequently, the least squares approximation is find $\phi \in Phi$ where

$$\|f-\phi\|_2$$

is as small as possible.

Assume that the π_i are linearly independent. Then we have

$$E = ||f - \phi||_2^2 = ||f - \sum_i c_i \pi_i||_2^2 \dots$$
 lots of algebra in class

This can be written in terms of terms involving $\int \pi_i \pi_j dx$ or $\int f \pi_i dx$. These are something called *inner products*.

ASIDE ON INNER PRODUCTS

The inner-product of two functions f and g is the result

$$\int_{a}^{b} f(x)g(x) dx \quad \text{or equivalently} \quad \int f(t)g(t) d\lambda(t) \quad \text{or equivalently} \quad \int fg d\lambda(t)$$
or equivalently (f,g)

These inner product have some nice properties

- Symmetric (f, g) = (g, f)
- Homogeneous $(\alpha f, g) = \alpha(f, g)$
- Additive (u + v, w) = (u, w) + (v, w)
- Positive Definite $(u, u) \ge 0$ and (u, u) = 0 if and only if u = 0.

These, of course, are really the properties of linearity.