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�ese notes are based on Chapter 2 in
Gautschi’s Numerical Analysis textbook.In this lecture, we look at how we �nd the best computer approximation of a function.

�is will give us computational representations.

THE PROBLEM SETUP
Given a function f , �nd ϕ ∈ Phi a linear function space.
What is f? f is simply what you are interested in working with! It could be something

simple, like sin(x). Or it could be something complicated, like the amount of fuel used by
a SpaceX rocket moving a satellite to a geostationary transfer orbit. �at second function
is much more complicated and I hope you agree it’s possible to simulate the function for
particular points in geostationary transfer orbit, but having any insight into the function
“as a math expression” is hard.
A simple setting for linear functions spaces is as a linear combination of elementary

functions. �ese are nice because we can represent elements in these function spaces with
their coe�cients

Example. Let π1(t), . . . , πn(t) be linearly independent functions. �enΦ = {c1π1(t)+
c2π2(t) + . . . + cnπn(t) ∣ c i ∈ R}

Linearly independent functions. (Or ?) In linear algebra with vectors, we have

v1 , . . . , vk

are linearly independent, then c1v1 + . . . + ckvk = 0 is true if and only if c1 , . . . , ck = 0.
So the same de�nition also holds for functions A linearly independent set of functions is
characterized by the property that the only way of representing the zero function f (t) = 0
is where all the scalar terms c1 , . . . , ck are zero.

limiting our class of functions

Now, the above setting is very general. We o�en look at standard classes.
Two standard classes are
· polynomials for general problems
· trig functions for periodic domains
Why these two classes? Well, let’s address polynomials �rst.
Polynomials are fairly easy to work with and reason about. �ey are linear combina-

tions of monomials.1 1 Although this is a terrible way to work with
them! Do not use monomial polynomial
representations unless you have very small
degree polynomials.

�e second reason polynomials are helpful is theWeierstrauss approximation theorem.

WEIERSTRAUSS APPROXIMATION THEOREM See Chapter 6 in Trefethen ATAP for more
on this theorem.Let f be a continuous function on [−1, 1]. Fix ε > 0. �en there exists a polynomial p

such that
∥ f − p∥

∞
≤ ε.

�e proof is hard and intricate and not particularly relevant. But it relies onmorphing
between a simple function f̂ and the original continuous function f using a PDE. �is
is a heat �ow PDE like you see in morphing animations. As we reverse this process, it’s
smooth (because it’s a heat �ow PDE) and super continuous. Each function at each step
then has a convergence taylor approximation, i.e. a polynomial.
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solving best approximation problems and the
normal equations

Let Φ be linear function space with basis function π i and coe�cients c i . Our goal is
to �nd ϕ ∈ Φ, or equivalently, c i , to represent an arbitrary function f .
Consequently, the least squares approximation is �nd ϕ ∈ Phi where

∥ f − ϕ∥2

is as small as possible.
Assume that the π i are linearly independent.
�en we have

E = ∥ f − ϕ∥22 = ∥ f −∑
i
c iπ i∥
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. . . lots of algebra in class

�is can be written in terms of terms involving ∫ π iπ j dx or ∫ f π i dx.
�ese are something called inner products.

aside on inner products

�e inner-product of two functions f and д is the result

∫ b

a
f (x)д(x) dx or equivalently ∫ f (t)д(t) dλ(t) or equivalently ∫ f д dλ(t)

or equivalently ( f , д)
�ese inner product have some nice properties

· Symmetric ( f , д) = (д, f )

· Homogeneous (α f , д) = α( f , д)

· Additive (u + v ,w) = (u,w) + (v ,w)

· Positive De�nite (u, u) ≥ 0 and (u, u) = 0 if and only if u = 0.

�ese, of course, are really the properties of linearity.
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