REPRESENTING FUNCTIONS ON COMPUTERS

David F. Gleich
February 11, 2021

In this lecture, we look at how we find the best computer approximation of a function. This will give us computational representations.

THE PROBLEM SETUP

Given a function f, find $\phi \in P h i$ a linear function space.
What is \mathbf{f} ? f is simply what you are interested in working with! It could be something simple, like $\sin (x)$. Or it could be something complicated, like the amount of fuel used by a SpaceX rocket moving a satellite to a geostationary transfer orbit. That second function is much more complicated and I hope you agree it's possible to simulate the function for particular points in geostationary transfer orbit, but having any insight into the function "as a math expression" is hard.

A simple setting for linear functions spaces is as a linear combination of elementary functions. These are nice because we can represent elements in these function spaces with their coefficients

Example. Let $\pi_{1}(t), \ldots, \pi_{n}(t)$ be linearly independent functions. Then $\Phi=\left\{c_{1} \pi_{1}(t)+\right.$ $\left.c_{2} \pi_{2}(t)+\ldots+c_{n} \pi_{n}(t) \mid c_{i} \in \mathbb{R}\right\}$

Linearly independent functions. (Or ?) In linear algebra with vectors, we have

$$
\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}
$$

are linearly independent, then $c_{1} \mathbf{v}_{1}+\ldots+c_{k} \mathbf{v}_{k}=0$ is true if and only if $c_{1}, \ldots, c_{k}=0$. So the same definition also holds for functions A linearly independent set of functions is characterized by the property that the only way of representing the zero function $f(t)=0$ is where all the scalar terms c_{1}, \ldots, c_{k} are zero.

LIMITING OUR CLASS OF FUNCTIONS

Now, the above setting is very general. We often look at standard classes.
Two standard classes are

- polynomials for general problems
- trig functions for periodic domains

Why these two classes? Well, let's address polynomials first.
Polynomials are fairly easy to work with and reason about. They are linear combinations of monomials. ${ }^{1}$

The second reason polynomials are helpful is the Weierstrauss approximation theorem.

WEIERSTRAUSS APPROXIMATION THEOREM

Let f be a continuous function on $[-1,1]$. Fix $\varepsilon>0$. Then there exists a polynomial p such that

$$
\|f-p\|_{\infty} \leq \varepsilon
$$

The proof is hard and intricate and not particularly relevant. But it relies on morphing between a simple function \hat{f} and the original continuous function f using a PDE. This is a heat flow PDE like you see in morphing animations. As we reverse this process, it's smooth (because it's a heat flow PDE) and super continuous. Each function at each step then has a convergence taylor approximation, i.e. a polynomial.

These notes are based on Chapter 2 in Gautschi's Numerical Analysis textbook.
${ }^{1}$ Although this is a terrible way to work with them! Do not use monomial polynomial representations unless you have very small degree polynomials.
See Chapter 6 in Trefethen ATAP for more on this theorem.

SOLVING BEST APPROXIMATION PROBLEMS AND THE NORMAL EQUATIONS

Let Φ be linear function space with basis function π_{i} and coefficients c_{i}. Our goal is to find $\phi \in \Phi$, or equivalently, c_{i}, to represent an arbitrary function f.

Consequently, the least squares approximation is find $\phi \in P h i$ where

$$
\|f-\phi\|_{2}
$$

is as small as possible.
Assume that the π_{i} are linearly independent.
Then we have

$$
E=\|f-\phi\|_{2}^{2}=\left\|f-\sum_{i} c_{i} \pi_{i}\right\|_{2}^{2} \ldots \text { lots of algebra in class }
$$

This can be written in terms of terms involving $\int \pi_{i} \pi_{j} d x$ or $\int f \pi_{i} d x$.
These are something called inner products.

ASIDE ON INNER PRODUCTS

The inner-product of two functions f and g is the result
$\int_{a}^{b} f(x) g(x) d x$ or equivalently $\int f(t) g(t) d \lambda(t)$ or equivalently $\int f g d \lambda(t)$

$$
\text { or equivalently }(f, g)
$$

These inner product have some nice properties

- Symmetric $(f, g)=(g, f)$
- Homogeneous $(\alpha f, g)=\alpha(f, g)$
- Additive $(u+v, w)=(u, w)+(v, w)$
- Positive Definite $(u, u) \geq 0$ and $(u, u)=0$ if and only if $u=0$.

These, of course, are really the properties of linearity.

