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In this lecture, we look at how we find the best computer approximation of a function.
This will give us computational representations.

THE PROBLEM SETUP

Given a function f, find ¢ € Phi a linear function space.

What is 2 f is simply what you are interested in working with! It could be something
simple, like sin(x). Or it could be something complicated, like the amount of fuel used by
a SpaceX rocket moving a satellite to a geostationary transfer orbit. That second function
is much more complicated and I hope you agree it’s possible to simulate the function for
particular points in geostationary transfer orbit, but having any insight into the function
“as a math expression” is hard.

A simple setting for linear functions spaces is as a linear combination of elementary
functions. These are nice because we can represent elements in these function spaces with
their coefficients

Example. Let 77, (¢), ..., m,(t) belinearly independent functions. Then @ = {c;m; (¢t)+
() +...+cumy(t) | c; e R}

Linearly independent functions. (Or ?) In linear algebra with vectors, we have

Vis...» V[

are linearly independent, then ¢;v; + ... + ¢,V = O is true if and only if ¢y, ..., ¢k = 0.
So the same definition also holds for functions A linearly independent set of functions is
characterized by the property that the only way of representing the zero function f(#) = 0
is where all the scalar terms ¢y, .. ., ¢; are zero.

LIMITING OUR CLASS OF FUNCTIONS

Now, the above setting is very general. We often look at standard classes.
Two standard classes are
- polynomials for general problems
- trig functions for periodic domains
Why these two classes? Well, let’s address polynomials first.
Polynomials are fairly easy to work with and reason about. They are linear combina-
tions of monomials.!
The second reason polynomials are helpful is the Weierstrauss approximation theorem.

WEIERSTRAUSS APPROXIMATION THEOREM
Let f be a continuous function on [-1, 1]. Fix & > 0. Then there exists a polynomial p
such that

The proof is hard and intricate and not particularly relevant. But it relies on morphing
between a simple function f and the original continuous function f using a PDE. This
is a heat flow PDE like you see in morphing animations. As we reverse this process, it’s
smooth (because it’s a heat flow PDE) and super continuous. Each function at each step
then has a convergence taylor approximation, i.e. a polynomial.

These notes are based on Chapter 2 in
Gautschi’s Numerical Analysis textbook.

! Although this is a terrible way to work with
them! Do not use monomial polynomial
representations unless you have very small
degree polynomials.

See Chapter 6 in Trefethen ATAP for more
on this theorem.



SOLVING BEST APPROXIMATION PROBLEMS AND THE

NORMAL EQUATIONS

Let @ be linear function space with basis function 7; and coeflicients ¢;. Our goal is

to find ¢ € @, or equivalently, c;, to represent an arbitrary function f.
Consequently, the least squares approximation is find ¢ € Phi where

|\f—¢\|2

is as small as possible.
Assume that the 7; are linearly independent.
Then we have

E=|f-¢li=|f- >eim ||2 ... lots of algebra in class
i 2

This can be written in terms of terms involving [ 7;7; dx or [ fm; dx.
These are something called inner products.

ASIDE ON INNER PRODUCTS

The inner-product of two functions f and g is the result

b
fa f(x)g(x)dx or equivalently f f(t)g(t)dA(t) orequivalently

or equivalently  (f, g)

These inner product have some nice properties
. Symmetric (1,g) = (g, /)
- Homogeneous (af, g) = a(f, g)
- Additive (u+v,w) = (u,w) + (v, w)
- Positive Definite (u, u) > 0 and (1, u) = 0 ifand only if u = 0.

These, of course, are really the properties of linearity.
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