
purdue university · cs 31400
numerical analysis

HOMEWORK
David F. Gleich
March 23, 2021

Please answer the following questions in complete sentences in a typed manuscript
and submit the solution on Gradescope by April 5th around 5am like our usual
deadline.

Problem 0: Homework checklist
• Please identify anyone, whether or not they are in the class, with whom

you discussed your homework. This problem is worth 1 point, but on a
multiplicative scale.

• Make sure you have included your source-code and prepared your solution
according to the most recent Piazza note on homework submissions.

Problem 1: Gautschi Exercise 3.29 + more
1. Derive the 2-point Gauss-Hermite quadrature rule.

2. Example application (from http://ice.uchicago.edu/2012_presentations/
Faculty/Judd/Quadrature_ICE11.pdf). An investor holds one bond that
will be worth 1 in the future and equity whose value is Z where logZ ∼
N(µ, σ2). (So this means that the log of the value of the expected utility
is a normally distributed random variable.) The expected utility is the
random number U = f(1 + Z). where f is a utility function, we’ll use
f(x) = x1+γ/(1 + γ), where γ < 0. (This is a concave utility function
because having more money doesn’t give you all that much more utility.)
We’ll use γ = −0.5. Suppose also that µ = 0.15 and σ = 0.25. We want
to find the expected utility to the investor! This involves evaluating the
integral

E[U] =
∫ ∞
−∞

f(1 + ex)e−(x−µ)2/(2σ2) dx.

Write a compute program to use Gauss-Hermite quadrature to approximate
the value of this integral. You need to justify the number of points you use
for the approximation.

Problem 2: Multivariate quadrature
In this problem, we will investigate multivariate quadrature for integrals such as

I =
∫ 1

−1

∫ 1

−1
f(x, y) dxdy

using tensor product rules. Let ti and wi be the nodes and weights of an n-point
1-dimensional Gauss-Legendre rule. Then the multidimensional quadrature rule
is:

I ≈
n∑
i=1

n∑
j=1

f(ti, tj)wiwj .

We can derive this as follows:

I ≈
∫ 1

−1

n∑
i=1

f(ti, y)widy ≈
n∑
i=1

n∑
j=1

f(ti, tj)wiwj .

1

http://ice.uchicago.edu/2012_presentations/Faculty/Judd/Quadrature_ICE11.pdf
http://ice.uchicago.edu/2012_presentations/Faculty/Judd/Quadrature_ICE11.pdf

Of course, this makes it clear we don’t have to use the same number of points
to integrate in x and y! So in general, let t(x)

i , w
(x)
i be an Nx-point Gauss-

Legendre quadrature rule for the x-variable and t(y)
i , w

(y)
i be an Ny-point Gaussian

quadrature for the y variable.

1. Implement a computer code to perform two-dimensional Gauss-Legendre
quadrature using this type of construction. Your code should allow a user
to input Nx and Ny to determine the number of points in each variable.

2. Use your code to estimate the integrals using 10 points in each dimension.

• f(x, y) = x2 + y2

• f(x, y) = x2y2

• f(x, y) = exp(x2 + y2)
• f(x, y) = (1− x2) + 100 ∗ (y − x2)2

3. This is an open ended question that requires you to investigate. You can
also find the answer in many textbooks, but if you do so, make sure you
document your sources and demonstrate the effect that is claimed. We
saw in class that an n-point Gaussian quadrature rule exactly integrated
polynomials of up to degree 2n− 1. In this problem, I want you to generate
a conjecture about the degree of exactness of multidimensional Gaussian
quadrature. You should use your code from part 1, along with carefully
constructed examples, to support a statement such as:

My evidence suggests that 2d Gauss-Legendre quadrature will exactly
integrate two-dimensional functions $f(x,y)$ when ...

Here are some helpful ideas that may play a role.

• The total degree of a multidimensional polynomial is the maximum of
the sum of degrees of each term. So f(x, y) = x2y2 has total degree 4.

• Another type of degree is the largest degree in each variable, so
f(x, y) = x2y2 involves polynomials of degree 2 only.

Problem 3: Monte Carlo, Gaussian-Legendre, and
Clenshaw-Curtis Quadrature
In this problem, we’ll study how different quadrature methods converge on a
variety of problems. For a technical paper on this idea, see Trefethen, Is Gaussian
Quadrature better than Clenshaw-Curtis? SIAM Review, 2008. In this problem,
we’ll be studying and reproducing Fig. 2 from that paper.

The functions are all defined on the region [−1, 1] and are:

• f1(x) = x20

• f2(x) = e−x
2

• f3(x) = e−1/(x2)

• f4(x) = ex

• f5(x) = 1/(1 + 16x2)
• f6(x) = |x|3

The quadrature methods are:

• Monte Carlo quadrature. Monte Carlo quadrature is a randomized
method. We simply guess n points between [−1, 1] uniformly at random and
then take the average of all the function values. For instance, the following
Julia code evaluates a Monte Carlo approximation

function montecarlo(f::Function, n::Int, a::Float64, b::Float64)
assert(a < b)

2

https://people.maths.ox.ac.uk/trefethen/publication/PDF/2008_127.pdf
https://people.maths.ox.ac.uk/trefethen/publication/PDF/2008_127.pdf

xi = (b-a)*rand(n)+a
fi = mean(f(xi))

end

• Clenshaw-Curtis quadrature. This quadrature uses Chebyshev points
of the second kind to build an interpolatory quadrature formula instead of
uniformly spaced points (as is common in Newton-Cotes quadrature). It
just so happens that there is an incredibly elegant method to compute the
weights associated with this quadrature based on the Fast-Fourier transform.
See Trefethen’s paper above for a 6-line Matlab code that implements
Clenshaw-Curtis quadrature.

• Gauss-Legendre quadrature. In Gauss-Legendre quadrature, we pick
the quadrature nodes and weights together. This gives even more accuracy.
To find these nodes and weights, we must evaluate the eigenvalues and one
component of each eigenvector of the Jacobi matrix associated with the
Legendre orthogonal polynomials. The Jacobi matrix for these polynomials
is easy:

J =

0
√

1/(4− 1/(12)) 0 0 0 . . .√
1/(4− 1/(12)) 0

√
1/(4− 1/(22)) 0 0 . . .

0
√

1/(4− 1/(22)) 0
√

1/(4− 1/(32)) 0 . . .
...

...
.

...
...

...
...

... . . .

The size of the matrix should be n× n if you want an n-point formula. To
get the nodes, we just look at the eigenvalues of the matrix. To get the
weights, we need to get the first component of each eigenvector, and square
it. (Hint: see Trefethen’s paper for a simple Matlab code.)

1. By whatever method you want, determine the exact values of these 6
integrals. (Hint: Wolfram Alpha is okay!)

2. Write a program to create the Jacobi matrix for Gauss-Legendre quadrature
and show the eigenvalues of the matrix for n = 11.

3. Implement a computer program for Clenshaw-Curtis quadrature. (Hint:
you can copy Trefethen’s routines, with attribution) but you must explain
the steps. Julia implementations are advisable too.

4. Implement a computer program for Gauss-Legendre quadrature.

5. Note that the Monte Carlo method is a randomized algorithm, so the result
will change if you do it again. Each run is called a trial or sample. Use
a computer implementation of Monte Carlo integration to how much the
values in a Monte Carlo integration can vary between one trial and the next.
Compute the variance for n = 100 and 1000 samples for each of the above
functions.

6. Prepare 6 figures like Trefethen had in his paper for the 6 functions. Except
use Monte Carlo integration instead of Newton-Cotes.

7. Empirically determine how computing the Gaussian Quadrature nodes and
weights scales as a function of n, the number of points, in terms of CPU time.
(Hint, consider n between 100 and 1000.) You should be able to justify your
final scaling constant in terms of the runtime of a known algorithm.

8. (Optional) There are some recent developments in fast quadrature
methods that produce the nodes and weights much more quickly.
In Julia, these are implemented in the FastGaussQuadrature pack-
age and the gausslegendre function and in Matlab, the function

3

legpts.m from Chebfun implements them (an old simple version
is here: http://www.mathworks.com/matlabcentral/fileexchange/
23972-chebfun-v4-old-version--please-download-current-version-instead/
content/chebfun/legpts.m Determine the simplest equation that describes
the empirical scaling for these routines to find the quadrature points and
weights. (Hint, consider n between 1000 and 100000.)

Problem 4: Gautschi Exercise 4.1
The following sequences converge to 0 as n→∞:

• vn = n−10

• wn = 10−n
• xn = 10−n2

• yn = n103−n
• zn = 10−3·2n

Indicate the type of convergence for each sequence in terms of

• Sublinear
• Linear
• Superlinear
• Quadratic
• Cubic
• None of the above

Problem 5: Implementing a core routine
1. Using any method we’ve seen to solve a scalar nonlinear equation (bisection,

false position, secant), develop a routine to compute
√
x using only addition,

subtraction, multiplication, and division (and basic control structures) to
numerical precision. (Use double-precision.)

2. Compare the results of your method to the Matlab/Julia/Python function
sqrt. Comment on any differences that surprise you.

4

http://www.mathworks.com/matlabcentral/fileexchange/23972-chebfun-v4-old-version--please-download-current-version-instead/content/chebfun/legpts.m
http://www.mathworks.com/matlabcentral/fileexchange/23972-chebfun-v4-old-version--please-download-current-version-instead/content/chebfun/legpts.m
http://www.mathworks.com/matlabcentral/fileexchange/23972-chebfun-v4-old-version--please-download-current-version-instead/content/chebfun/legpts.m

	Problem 0: Homework checklist
	Problem 1: Gautschi Exercise 3.29 + more
	Problem 2: Multivariate quadrature
	Problem 3: Monte Carlo, Gaussian-Legendre, and Clenshaw-Curtis Quadrature
	Problem 4: Gautschi Exercise 4.1
	Problem 5: Implementing a core routine

