List of topics

Chapter 1
Syllabus
1/sqrt(x)
Sources of error
Alternative floats
IEEE Floats
Fund. floating point props.
Condition numbers
 Sharp (elm-wise) vs. Weak (norms)
Condition number of Ax=b
Overall floating point error
Variance computation

Chapter 2
Best approx prob.
Integrals, inner-products, and measures
Weierstrauss approx. thm.
Orthogonal functions
Lagrange interpolant
Chebyshev nodes
Barycentric interp.
Newton interp.
Divided differences
Hermite interpolation
Splines
Piecewise interp.
Error equation

Chapter 3
Approximating derivatives
Forward, backward diff.
Central diff.
Sensitivity of differen
Trapezoid + Simpson
Interpolatory quadrature
Degree of exactness
Orthogonal polynomials
Undetermined coefficients
Computer impl.
List of concepts

Chapter 1
Syllabus
1/sqrt(x)
Sources of error
Alternative floats
IEEE Floats
Fund. floating point props.
Condition numbers
 Sharp (elm-wise) vs. Weak (norms)
Condition number of Ax=b
Overall floating point error
 Variance computation

Chapter 2
Best approx prob.
 Integrals, inner-products, and measures
 Weierstrauss thm.
 Orthogonal functions
 Lagrange interpolant
 Chebyshev nodes
 Barycentric interp.
 Newton interp.
 Divided differences
 Hermite interpolation
 Splines
 Piecewise interp.
 Error equation

Chapter 3
Approximating derivatives
 Forward, backward diff.
 Central diff.
Sensitivity of differen
 Trapezoid + Simpson
Interpolatory quadrature
Degree of exactness
 Orthogonal polynomials
 Undetermined coefficients
 Computer impl.
List of techniques

Chapter 1
Syllabus
1/sqrt(x)
Sources of error
Alternative floats
IEEE Floats
Fund. floating point props.
Condition numbers
 - Sharp (elm-wise) vs. Weak (norms)
Condition number of Ax=b
Overall floating point error
Variance computation

Chapter 2
Best approx prob.
Integrals, inner-products, and measures
Weierstrass thm.
Orthogonal functions
Lagrange interpolant
Chebyshev nodes
Barycentric interp.
Newton interp.
Divided differences
Hermite interpolation
Splines
Piecewise interp.
Error equation

Chapter 3
Approximating derivatives
Forward, backward diff.
Central diff.
Sensitivity of differen
Trapezoid + Simpson
Interpolatory quadrature
Degree of exactness
Orthogonal polynomials
Undetermined coefficients
Computer impl.
Types of problems to expect

Explain what this Julia code does

function myfunc(xx, fvals, x)
 fx = zeros(length(x))
 for i=1:length(x)
 xind = findmin(abs(xx-x[i]))
 fx[i] = fvals[xind]
 end
end

Grading
- Type of problem (floating point, interp., diff, quad, …)
- Details.
Types of problems to expect

• Which code produced which output?
• Identify these concepts in an argument
• Use the idea of XXX to study ZZZ (concept generalization)
• What is the order of accuracy / scaling of the error term of this polynomial approx. / derivative approx.