Numerical and Scientific Computing with Applications
David F. Gleich
CS 314, Purdue

September 8, 2016

* Examples of why simple Q Uiz &
floating point operations F’ oat '° n g P o ,' nt mat h

lose significant digits.

In this class:

* Some rules of thumb for Next class

good floating point codes Monte Carlo Methods
G&C — Chapter 3

Next next class

Review of probability and stats
G&C — Chapter 3

Rules of thumb for floating point

1. Use as much precision as possible
(unless you want to study your problem).

It’"d be good if we had access to hardware quad
precision for the “big-data” eral

2. Refactor to avoid catastrophic cancellation.

It’"d be good if we had access to hardware quad
precision for the “big-data” eral

3. Avoid for unnecessary sguaring.
4, Use logs for small probabillities.

A simple floating point computation

n
IX[[= | > x?
\ %

function enorm_simple(x)
n = 0.
for i=1:1length(x)

n =n + x[i]*xx[i]
end
return sqrt(n)
end

... test in Julia ...

A simple floating point computation

n
IX[[= | > x?
\ %

function enorm_simple(x) Results
n = 0.
for i=1:1length(x)

n =n + x[i]*x[i]

1. Can give Inf. when
unnecessary

2. Inaccurate ?
end

return sqrt(n)
end

Not-so simple floating point computation

n

n 2
x| = \ S X2 = \xmaxl\ > ()
/=1 '

function enorm_guardl(x)
n = 1.; xmax = abs(x[1])
for i=2:1length(x)
ab = abs(x[i])
1T ab > xmax
n =1 + nk(xmax/ab).”2; xmax=ab
else n += (ab/xmax).”2
end; end; return xmaxxsqrt(n); end

... test in Julia ...

Not-so simple floating point computation

n
x| =:\\‘§E::)¢2==‘)Gnax|\\
=1

function enorm_guardl(x)
n = 1.; xmax = abs(x[1])
for i=2:1length(x)
ab = abs(x[i])
if ab > xmax
n =1 + nx(xmax/ab).”2;
Xmax=ab
else n += (ab/xmax).”2

n

> ()

=1

Results

unnecessary
2. Better accuracy

end: end: return xmaxxsqart(n): end

Are these answers wrong?

Yes

We have
computed a higher-
accuracy answer and
didn’t.

No

They are still highly
accurate

which is larger
than needed for most
applications.

But you never know when it ign’t!

Catastrophic cancellation

Suppose that we compute
Zz=aecb a~b

It's easy to lose all accuracy in z.

This happened to me about a year ago using someone else’s code

It wasn't that his equations were wrong. The problem was
round-off error caused by the subtraction of two nearly-equal
numbers in the divisor of a single line of native C++ code, the
code that controlled the payload trajectories. If Rolf Koenig
hadn’t caught it, his mistake would have resulted in a three-and-
a-half-meter targeting error for the third of the six packages. That
error would have produced an eleven-nanosecond delay in the
gamma pulse, well outside the two-nanosecond tolerance.

As he stared at the C++ code on his screen, he made the
required change, and then spent the next thirty minutes writing
a test driver to validate the patch. To Rolf’s credit, he hadn’t fixed

Dead wrong by Richard Phillips, Chapter 55, Page 208

How to avoid cancellation?

Think!
(x° —y?) = (x +y)(x — y)

f(x)=(x—t)(x—1b) (X —)
f'(X) = >0y 22

How to avoid cancellation?

Not always easy!

v/ b2 — 4ac

Takes quite a few lines of Matlab code to do
properly and involved proofs of floating point

poroperties. (That have been their own
research papers!)

How to avoid cancellation?

Not always easy!
00 N—1

ENE
I=N =1

Needed to use a totally different derivation of
the left-hand side.

f

=1

e.qg. Taylor series approximation around a
different point.

The moral
Rules of thumb for floating point

1. Use as much precision as possible
(unless you want to study your problem).

It"d be good if we had access to hardware quad
precision for the “big-data” eral

2. Refactor to avoid catastrophic cancellation.

It’"d be good if we had access to hardware quad
precision for the “big-data” eral

3. Avoid for unnecessary sqguaring.
4, Use logs for small probabillities.

