
Monte Carlo Methods
G&C – Chapter 3

Numerical and Scientific Computing with Applications
David F. Gleich

CS 314, Purdue

September 8, 2016

QUIZ & 
Floating point math

Next class

Review of probability and stats
G&C – Chapter 3

Next next class

In this class:

• Examples of why simple 
floating point operations 
lose significant digits.

• Some rules of thumb for 
good floating point codes



Rules of thumb for floating point
1. Use as much precision as possible 

(unless you want to study your problem).
It’d be good if we had access to hardware quad 
precision for the “big-data” era!

2. Refactor to avoid catastrophic cancellation.
It’d be good if we had access to hardware quad 
precision for the “big-data” era!

3. Avoid for unnecessary squaring.
4. Use logs for small probabilities.



A simple floating point computation

function enorm_simple(x)
n = 0.
for i=1:length(x)

n = n + x[i]*x[i]
end
return sqrt(n)
end

kxk =

vuut
nX

i=1

x

2
i



… test in Julia …





A simple floating point computation

function enorm_simple(x)
n = 0.
for i=1:length(x)

n = n + x[i]*x[i]
end
return sqrt(n)
end

kxk =

vuut
nX

i=1

x

2
i

Results 

1. Can give Inf. when 
unnecessary

2. Inaccurate ?



Not-so simple floating point computation

function enorm_guard1(x)
n = 1.; xmax = abs(x[1])
for i=2:length(x)

ab = abs(x[i])
if ab > xmax

n = 1 + n*(xmax/ab).^2; xmax=ab
else n += (ab/xmax).^2

end; end; return xmax*sqrt(n); end

kxk =

vuut
nX

i=1

x

2

i

= |x
max

|

vuut
nX

i=1

⇣
x

i

x

max

⌘
2



… test in Julia …



Not-so simple floating point computation

function enorm_guard1(x)
n = 1.; xmax = abs(x[1])
for i=2:length(x)

ab = abs(x[i])
if ab > xmax

n = 1 + n*(xmax/ab).^2; 
xmax=ab

else n += (ab/xmax).^2
end; end; return xmax*sqrt(n); end

Results 

1. Can give Inf. when 
unnecessary

2. Better accuracy

kxk =

vuut
nX

i=1

x

2

i

= |x
max

|

vuut
nX

i=1

⇣
x

i

x

max

⌘
2



Are these answers wrong?
Yes

We could have 
computed a higher-
accuracy answer and 
didn’t.

No

They are still highly 
accurate (12 digits of 
precision!) which is larger 
than needed for most 
applications.

But you never know when it isn’t!



Catastrophic cancellation
Suppose that we compute

It’s easy to lose all accuracy in z.

This happened to me about a year ago using someone else’s code

z = a b a ⇡ b
1X

i=N

fi =
1X

i=1

fi �
N�1X

i=1

fi



Dead wrong by Richard Phillips, Chapter 55, Page 208



How to avoid cancellation?

(x2 � y

2) = (x + y )(x � y )

f (x) = (x � t1)(x � t2) · · · (x � t

k

)
f

0(x) =
P

n

i=1
f (x)
x�t

i

Think!



How to avoid cancellation?
Not always easy! 

Takes quite a few lines of Matlab code to do 
properly and involved proofs of floating point 
properties. (That have been their own 
research papers!)

p
b2 � 4ac



How to avoid cancellation?
Not always easy! 

Needed to use a totally different derivation of 
the left-hand side. 

e.g. Taylor series approximation around a 
different point.

1X

i=N

fi =
1X

i=1

fi �
N�1X

i=1

fi



The moral
Rules of thumb for floating point

1. Use as much precision as possible 
(unless you want to study your problem).

It’d be good if we had access to hardware quad 
precision for the “big-data” era!

2. Refactor to avoid catastrophic cancellation.
It’d be good if we had access to hardware quad 
precision for the “big-data” era!

3. Avoid for unnecessary squaring.
4. Use logs for small probabilities.


