In this class:

- The Newton method and how it works where bisection cannot!

- The Secant method and how it avoids needing the derivatives that Newton’s requires.

- The fixed-point form of the nonlinear equation problem.

- List of topics

- Selected problems from HW
Background I assume

Linear algebra
Calculus
Differential equations
Discrete math
Programming
Probability

I’ll try to remind you what you need to know
Topics we’ve covered

Week 10
- Intro to Applied Math
- Function representations
- Polynomial interpolation
- Lagrange polynomials
- Barycentric form
- Vandermonde matrix
- Piecewise polynomials
- ApproxFun

Week 11
- Numerical differentiation
 - Truncation error for numerical differentiation
 - Errors in forward difference
 - Errors in central difference
- Combinations of floating point error and truncation error
- Richardson extrapolation
- Errors in polynomial interpolation
- High dimensional polynomials

Week 12
- Numerical integration
 - Quadrature
 - Trapezoidal rule
 - Composite trapezoidal rules

Week 13
- Ordinary differential equations
 - Forward Euler
 - Local truncation error
 - Consistency
 - Convergence
 - Stability
 - Absolute stability
 - Backwards Euler
 - Runge-Kutta

Week 14
- Nonlinear equations
 - Bisection
 - Newton’s method
 - Secant method
 - Fixed Point methods