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In this class you should learn:

• Understand that consistent + 
stability implies convergence of an 
ODE method.

• See the backward Euler method for 
solving an equation, and what this 
has to do with Hooke’s law and stiff 
problems.

• Then we’ll have a group exercise on 
2-point BVPs



Convergent ODEs
yk+1 = yk + h step[yk , t , h]

Worst approx at 
any time point

• The global error of an approximation is:

max

k=1,...,N
kyk � y⇤

(tk )k.

• A scheme step is convergent if global

error ! 0 as h ! 0.



Convergent ODEs
yk+1 = yk + h step[yk , t , h]

Worst approx at 
any time point

• The global error of an approximation is:

max

k=1,...,N
kyk � y⇤

(tk )k.

• A scheme step is convergent if global

error ! 0 as h ! 0.

• All schemes step we look at in this class are

stable

• The local truncation error of step is

1

h (y⇤
(t + h) � y⇤

(t)) � step[y⇤
(t), t , h]

We want this!

Just a technical notion of “super-continuous”



Convergent ODEs
yk+1 = yk + h step[yk , t , h]

• A method is consistent if

lim

h!0

step[yk , t , h] = f(yk , t).

Theorem 11.2.2 If a method is consistent and

stable with local truncation error O(hp
), then the

global error is O(hp
) and the method is conver-

gent.

Corollary If a method is consistent and stable,

then it is convergent.



Forward Euler is Convergent
yk+1 = yk + h step[yk , t , h]

step[yk , t , h] = f(yk , t) Step for FE

Stability by Prof. assertion & guarantee.

y⇤(t + h) = y⇤(t) + h d
dt y

⇤(t) + O(h2)

Hence, this is convergent! By THEOREM

1
h (y⇤(t + h) � y⇤(t)) = d

dt y
⇤(t) + O(h) = f(y⇤(t), t) + O(h) = step[y⇤(t), t , h] + O(h)

So local truncation error is O(h) and so is Global Error!



Convergent
• Fixed time window! 
• EXTREMELY large 

constants. 
• Just an asymptotic 

statement
Global Error -> 0 as 
h -> 0 
in some window [0,T]

Absolute Stability
• Infinite time window
• One specific equation

yk ! 0 for

dy
dt = �y when Re(�) < 0



Hooke’s Law
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Implicit Methods & Backward Euler
Consider our derivation of Forward Euler

1

h

(y(h) � y(0)) ⇡ y
.

/dt = f(y(0), 0)

The following is just as valid!

1

h

(y(h) � y(0)) ⇡ y
.

/dt = f(y(h), h)

i.e. the derivative holds at the unknown future

Using this idea requires us to implicitly assume

that we known y(h) and solve for its value.

We get the step 
from this idea, 
then iterate!

Use backwards in 
time instead of 
foreword approx.



Implicit Methods & Backward Euler
Backward Euler

Given yk , solve

yk + hf(x, tk+1

) � x = 0

for x and set yk+1

= x. (This is a nonlinear

equation that we’ll see how to solve in the next

class)

Backward Euler for

dy

dt = Ay

Given yk , solve

yk + hAx � x = 0 , (� � hA)x = yk

for x and set yk+1

= x. (This is a linear equation!)

This is, generally 
speaking, very 
hard to do!

This is often much 
easier to do! 



Why use implicit methods? 
• Much better stability properties for long 

time integration! e.g.  The region of 
absolute stability for backwards Euler is 

z = �h Re(z)

Im(z)

Not 
valid!

����
1

1 � h�

���� < 1

Everything 
else is valid!



Example of Backwards Euler
Juliabox!



Why use implicit methods? 
• They work better for Stiff Problems! These 

are problems where Foreward Euler would 
need a very small time-step. 
(Last 3 mins of class!) 



Now!
Team exercise on BVPs!
• Organize into small reading groups
• Work through as much of the BVP notes as 

you can. Ask questions! There may be 
typos! You really do know this material at 
this point! 


