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In this class you should learn:
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Understand that consistent + Ter ms, ’ m p’ i Ci t MEth Ods’
stability implies convergence of an St I ff Problems & BVPs

ODE method.

See the backward Euler method for Next class

solving an equation, and what this _— :
has to do with Hooke’s law and stiff Optimization

problems. Chapter 4

Then we’ll have a group exercise on
2-point BVPs Next next class

Review & Misc. topics



Convergent ODEs

Vi1 = Yi + hsteplyy, t, ]

e The global error of an approximation is:

gt Worst approx at
k=1,..N y (tk)H any time point

e A scheme step is convergent if global
error - 0as h— 0.



Convergent ODEs

Vi1 = Yi + hsteplyy, t, ]

e The global error of an approximation is:

gt Worst approx at
k=1,..N y (tk)H any time point

e A scheme step is convergent if global e want this!
error - 0as h— 0.

e All schemes step we look at in this class are
stable Just a technical notion of “super-continuous”

e The local truncation error of step Is

Ry (t+ h) =y (1) — steply™(1), ¢, f]



Convergent ODEs

Vi1 = Yi + hsteplyy, t, ]

e A method is consistent if

lim steplY,, , h] = f(y,, {).

h—0

Theorem 11.2.2 If a method is consistent and
stable with local truncation error O(hP), then the

global error is O(h®) and the method is conver-
gent.

Corollary If a method is consistent and stable,
then it is convergent.



Forward Euler is Convergent

Yie1 = Yi + hsteplyy, £, Al
step[Yy, [, h] = f(y,, ) StepforFE
Stability by Prof. assertion & guarantee.

Hence, this is convergent! By THEOREM

y*(t+h) = y* (&) + hgy*(t) + O(F)
RV (E+ h) —y* (1) = Gy (1) + O(h) = f(y* (1), £) + O(h) = steply* (1), t, h] + O(h)

So local truncation error is O(h) and so is Global Error!



Convergent Absolute Stability
* Fixed time window! * |nfinite time window

« EXTREMELY large « One specific equation
constants.

e Just an asymptotic
statement
Global Error -> 0 as
h->0
in some window [0, T]

Y. — 0for & = \y when Re()) < 0



Hooke’s Law
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Implicit Methods & Backward Euler

Consider our derivation of Forward Euler

We get the step
(y(h) —y(0)) = y/dt = 1(y(0), 0) from this idea,

then iteratel!

>l—=

The following is just as valid!

Use backwards in
H(y(h) = y(0) ~ y/at = H(y(h), h) time instead o

foreword approx.
l.e. the derivative holds at the unknown future

Using this idea requires us to implicitly assume
that we known y(h) and solve for its value.



Implicit Methods & Backward Euler

Backward Euler

Given y,, solve o
This is, generally

speaking, very
Yy + hi(X, 1) — X =0 hard to do!

for x and sety,,; = X. (This is a nonlinear
equation that we’ll see how to solve in the next
class)

Backward Euler for & = Ay

Given y,, solve

Jo v AKX =0 0 U~ ha =y, LS5

for x and sety,,, = X. (This is a linear equation!)



Why use implicit methods?

* Much better stability properties for long
time integration! e.g. The region of
absolute stabllity for backwards Euler is

1
1—hA

<

Im(z)

Everything
Z=MAh else is valid!




Example of Backwards Euler

Juliabox!



Why use implicit methods?

* They work better for Stiff Problems! These
are problems where Foreward Euler would
need a very small time-step.

(Last 3 mins of class!)



Now!

Team exercise on BVPs!
* QOrganize into small reading groups

* Work through as much of the BVP notes as
you can. Ask guestions! There may be
typos! You really do know this material at

this point!



