Numerical and Scientific Computing with Applications David F. Gleich CS 314, Purdue

In this class you should learn:

- Understand that consistent + stability implies convergence of an ODE method.
- See the backward Euler method for solving an equation, and what this has to do with Hooke's law and stiff problems.
- Then we'll have a group exercise on 2-point BVPs

Terms, Implicit Methods, Stiff Problems & BVPs

> Next class Optimization Chapter 4

November 21, 2016

Next next class

Review & Misc. topics

Convergent ODEs

 $\mathbf{y}_{k+1} = \mathbf{y}_k + h \operatorname{step}[\mathbf{y}_k, t, h]$

• The *global error* of an approximation is:

$$\max_{k=1,...,N} \|\mathbf{y}_k - \mathbf{y}^*(t_k)\|.$$
 Worst approx at any time point

• A scheme step is *convergent* if global error \rightarrow 0 as $h \rightarrow$ 0.

Convergent ODEs

 $\mathbf{y}_{k+1} = \mathbf{y}_k + h \operatorname{step}[\mathbf{y}_k, t, h]$

• The *global error* of an approximation is:

$$\max_{k=1,...,N} \|\mathbf{y}_k - \mathbf{y}^*(t_k)\|.$$
 Worst approx at any time point

- A scheme step is *convergent* if global We want this! error $\rightarrow 0$ as $h \rightarrow 0$.
- All schemes step we look at in this class are *stable* Just a technical notion of "super-continuous"
- The local truncation error of step is

 $\frac{1}{h}(\mathbf{y}^*(t+h) - \mathbf{y}^*(t)) - \operatorname{step}[\mathbf{y}^*(t), t, h]$

Convergent ODEs

 $\mathbf{y}_{k+1} = \mathbf{y}_k + h \operatorname{step}[\mathbf{y}_k, t, h]$

• A method is *consistent* if

$$\lim_{h\to 0} \operatorname{step}[\mathbf{y}_k, t, h] = \mathbf{f}(\mathbf{y}_k, t).$$

Theorem 11.2.2 If a method is consistent and stable with local truncation error $O(h^p)$, then the global error is $O(h^p)$ and the method is convergent.

Corollary If a method is consistent and stable, then it is convergent.

Forward Euler is Convergent

 $\mathbf{y}_{k+1} = \mathbf{y}_k + h \operatorname{step}[\mathbf{y}_k, t, h]$

 $step[\mathbf{y}_k, t, h] = \mathbf{f}(\mathbf{y}_k, t)$ Step for FE

Stability by Prof. assertion & guarantee.

Hence, this is convergent! By THEOREM

$$\mathbf{y}^*(t+h) = \mathbf{y}^*(t) + h\frac{d}{dt}\mathbf{y}^*(t) + O(h^2)$$

 $\frac{1}{h}(\mathbf{y}^*(t+h) - \mathbf{y}^*(t)) = \frac{d}{dt}\mathbf{y}^*(t) + O(h) = \mathbf{f}(\mathbf{y}^*(t), t) + O(h) = \mathtt{step}[\mathbf{y}^*(t), t, h] + O(h)$

So local truncation error is O(h) and so is Global Error!

Convergent

- Fixed time window!
- EXTREMELY large constants.
- Just an asymptotic statement
 Global Error -> 0 as
 h -> 0
 in some window [0,T]

Absolute Stability

- Infinite time window
- One specific equation

 $\mathbf{y}_k \rightarrow 0$ for $\frac{dy}{dt} = \lambda y$ when $\operatorname{Re}(\lambda) < 0$

Hooke's Law

Re(z)

Implicit Methods & Backward Euler

Consider our derivation of Forward Euler

$$\frac{1}{h}(\mathbf{y}(h) - \mathbf{y}(0)) \approx \mathbf{y}/dt = \mathbf{f}(\mathbf{y}(0), 0)$$

We get the step from this idea, then iterate!

The following is just as valid!

 $\frac{1}{h}(\mathbf{y}(h) - \mathbf{y}(0)) \approx \mathbf{y}/dt = \mathbf{f}(\mathbf{y}(h), h)$ Use backwards in time instead of foreword approx.

i.e. the derivative holds at the unknown future

Using this idea requires us to *implicitly* assume that we known $\mathbf{y}(h)$ and *solve* for its value.

Implicit Methods & Backward Euler

Backward Euler

Given \mathbf{y}_k , solve

$$\mathbf{y}_k + h\mathbf{f}(\mathbf{x}, t_{k+1}) - \mathbf{x} = 0$$

This is, generally speaking, very hard to do!

for **x** and set $\mathbf{y}_{k+1} = \mathbf{x}$. (This is a nonlinear equation that we'll see how to solve in the next class)

Backward Euler for $\frac{d\mathbf{y}}{dt} = \mathbf{A}\mathbf{y}$ Given \mathbf{y}_k , solve

 $\mathbf{y}_k + h\mathbf{A}\mathbf{x} - \mathbf{x} = 0 \Leftrightarrow (\mathbf{I} - h\mathbf{A})\mathbf{x} = \mathbf{y}_k$ This is often much easier to do!

for **x** and set $\mathbf{y}_{k+1} = \mathbf{x}$. (This is a linear equation!)

Why use implicit methods?

• Much better stability properties for long time integration! e.g. The region of absolute stability for backwards Euler is

Example of Backwards Euler

Juliabox!

Why use implicit methods?

 They work better for Stiff Problems! These are problems where Foreward Euler would need a very small time-step. (Last 3 mins of class!)

Now!

Team exercise on BVPs!

- Organize into small reading groups
- Work through as much of the BVP notes as you can. Ask questions! There may be typos! You really do know this material at this point!