Numerical and Scientific Computing with Applications David F. Gleich CS 314, Purdue

In this class you should learn:

- Two more methods: Heun's method and the RK4 method (book has Simpson's rule)
- What goes wrong with Forward Euler on the Spring System
- Understand what absolute stability is and why it is different from stability.
- How a small set of topics allow us to understand what is going on with an approximate solution to an ODE

November 18, 2016

How to debug ODE methods

Next class

Stiff problems, 2-point BVPs & PDEs Chapters 13, 14

Next next class

Optimization Chapter 4

Terminology

- A "solver" for an ODE is called a
- Scheme
- Method
- Integator

Somewhat interchangeably.

- Scheme how you go from step k to k+1
- Integrator/Method Overall approach

Notation

$$\mathbf{y}^*(t)$$
 is exact
 $\mathbf{y}(t) \approx \mathbf{y}(hk) = \mathbf{y}_k$

exact comp. approx $\mathbf{y}^*(t)$ is exact if otherwise unclear

Writing Forward Euler as a scheme

$$\mathbf{y}((k+1)h) = \mathbf{y}(kh) + h\mathbf{f}(kh, \mathbf{y}(hk))$$
$$\mathbf{y}_{k+1} = \mathbf{y}_k + h\mathbf{f}(kh, \mathbf{y}_k)$$
$$\mathbf{y}_{k+1} = \mathbf{y}_k + h\mathbf{f}(t_k, \mathbf{y}_k)$$
$$\mathbf{y}_{k+1} = \mathbf{y}_k + h\mathbf{f}(t, \mathbf{y}_k)$$

Summary of Notation $\mathbf{y}^*(t)$ is exact $\underbrace{\mathbf{y}(t)}_{\text{exact}} \approx \underbrace{\mathbf{y}(hk) = \mathbf{y}_k}_{\text{comp. approx}}$

These are all meant to be equivalent ways of writing Forward Euler.

Heun's method

$$y_{k+1} = y_k + h/2[q_1 + q_2]$$

$$q_1 = f(t_k, y_k)$$

$$q_2 = f(t_k + h, y_k + hf(t_k, y_k))$$

Summary of Notation $\mathbf{y}^*(t)$ is exact $\underbrace{\mathbf{y}(t)}_{\text{exact}} \approx \underbrace{\mathbf{y}(hk) = \mathbf{y}_k}_{\text{comp. approx}}$

Runge Kutta methods

Runge-Kutta 4th order method

"Related" to a Simpson integration rule.

$$y_{k+1} = y_k + h/6[q_1 + 2q_2 + 2q_3 + q_4]$$

$$q_1 = f(t_k, y_k)$$

$$q_2 = f(t_k + h/2, y_k + h/2q_1)$$

$$q_3 = f(t_k + h/2, y_k + h/2q_2)$$

$$q_4 = f(t_k + h, y_k + q_3)$$

Just a one step method!

Julia makes it adaptive in the ode45 routine.