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Piecewise polynomials

Next class

More numerical differentiation
Next next class

In this class:

• Quiz

• Barycentric form

• The error polynomial

• ApproxFun

• Piecewise linear 
approximations

• Piecewise quadratics?

• Piecewise cubics & splines 
– a surprising linear 
system!
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Error in polynomial interpolation
THEOREM 8.4.1

Assume
that f is n + 1 times cont. diff. in a region [a, b], and

that x

0

, ... , x

n

are distinct points in [a, b].

Let
p(x) be the unique polynomial of degree n

that interpolates f at x

0

, ... , x

n

.

Then
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in [a, b] that depends on x .



Analysis

f (x) � p(x) =
1

(n + 1)!
f

(n+1)(⇠
x

)
nY

j=0
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i

)

Goes down with n

Hard to control if 
the n+1 derivative 
isn’t well behaved.

A polynomial that is 
zero at each xi if this 
is necessarily large, 
we’ll study this!



Interpolation at Chebyshev points
THEOREM 8.5.1
Let
f be a continuous function on [�1, 1]

pn its degree n interpolant at Chebyshev points

p⇤
n its best approximation among n degree

polynomials in the uniform error

Then
uniform error in pn  (2 +

2

⇡ log n)uniform error in p⇤
n

pn converges exponentially fast to f if f is smooth



Analysis
If we interpolate f at Chebyshev points, we get 
something close to the best possible result

Example. Suppose f is complicated. 

and if f doesn’t have discontinuous derivatives (e.g. 
sin, cos, exp, …),  best approx gets small “very fast”

max

x

|p⇤
n

(x) � f (x)|  10

�5and best (unknowable) 
degree 100 poly p100* gets

max

x

|p
n

(x) � f (x)|  5 · 10

�5computable Chebyshev 
degree 100 poly p100 gets

(2 +2/pi log(100)) 
<= 5



ApproxFun demo



Piecewise polynomial approximation

Used all over!



Powerpoint curves



Piecewise polynomial approximationa



Piecewise polynomial approximation
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Piecewise polynomial approximation

Linear Uses a set of functions values & points
Good if there are many points

Quadratic Same info
Can use extra point to match midpoints

Cubic Hermite Uses points, function values, and 
derivatives

Matches the function values and derivatives!
Cubic Splines Uses points, function values

A twice continuously differentiable interpolant!



Piecewise polynomial approximation

Linear
Easy!
Quadratic
Easy!
Cubic Hermite
Local work
Cubic Splines 
Global work
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Cubic Hermite

4 parameters, 4 unknowns in the cubic 
polynomial between xi, xi+1

Fit via differentiation. 
One continuous derivative! See the book.

xi xi+1

f(xi) f’(xi)
f(xi+1) f’(xi+1)



Cubic Splines

4(n-1) parameters, e.g. 4 unknowns in the cubic 
polynomial between xi, xi+1

Matching points gives 2(n-1) constraints
Derivatives are continuous (n-3) constraints

2nd derivatives are continuous (n-3) constraints

x3 x4

f(xi) f(xi+1) x2

x1



Cubic Splines
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Piecewise linear second derivative

Continuous 
derivative 
gives us a 
linear system


