Numerical and Scientific Computing with Applications David F. Gleich CS 314, Purdue

October 26, 2016

Various forms of the interpolanting poly. & some error analysis

Next class

QUIZ More on error & piecewise interpolants Next next class

Derivatives

In this class:

- Lagrange polynomials and Lagrange interpolation
- Barycentric form of the interpolant.
- The error in the interpolant
- APPROXFUN

Error in polynomial interpolation

THEOREM 8.4.1

Assume

that *f* is n + 1 times cont. diff. in a region [*a*, *b*], and that x_0, \ldots, x_n are distinct points in [*a*, *b*].

Let

p(x) be the unique polynomial of degree n that interpolates f at x_0, \ldots, x_n .

Then

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) \prod_{j=0}^n (x - x_j)$$

for some point ξ_x in [a, b] that depends on x.

Analysis Hard to control if the n+1 derivative isn't well behaved. Goes down with n n $[(X - X_i)]$ $f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) \prod_{i=1}^{n}$ i=0 A polynomial that is zero at each x_i if this is necessarily large, we'll study this!

Interpolation at Chebyshev points

THEOREM 8.5.1

Let

f be a continuous function on [-1, 1]

 p_n its degree *n* interpolant at Chebyshev points

 p_n^* its best approximation among *n* degree polynomials in the uniform error

Then

uniform error in $p_n \le (2 + \frac{2}{\pi} \log n)$ uniform error in p_n^* p_n converges exponentially fast to *f* if *f* is smooth

Analysis

If we interpolate f at Chebyshev points, we get something close to the *best possible result*

Example. Suppose f is complicated.

and best (unknowable)
degree 100 poly
$$p_{100}^*$$
 gets $\max_{x} |p_n^*(x) - f(x)| \le 10^{-5}$
computable Chebyshev
degree 100 poly p_{100} gets $\max_{x} |p_n(x) - f(x)| \le 5 \cdot 10^{-5}$ (2 +2/pi log(100))
 $<= 5$

and if *f* doesn't have discontinuous derivatives (e.g. sin, cos, exp, ...), best approx gets small "very fast"

ApproxFun demo