
Lagrange polynomials

Numerical and Scientific Computing with Applications
David F. Gleich

CS 314, Purdue

October 24, 2016

Numerical Methods,
Applied Mathematics, and

Polynomial interpolation

Next class

QUIZ
Piecewise interpolants & Splines

Next next class

In this class:

• A quick overview of the
numerical methods
perspective on applied
mathematics

• Overview of Unit 3.

• Interpolation “grids”

• Polynomial interpolation
via least squares.

• APPROXFUN

Applied mathematics

functions
not

numbers

Find a function with this property
Find a function that satisfies this equation

Find a property of this function

Applied mathematics

What is the value of the integral of a function?
What is the derivative function of a given function?
What function solves a given differential equation?

Problems in applied math

In this part of the course, it is much harder to
find “simple real world” examples as the

complexities of realistic problems multiply.

Many of the problems we’ll study are
abstractions of more intricate real-world

problems.

Numerical Methods for Applied Math
1. Take the continuous problem.

e.g. integral
2. Compute a discrete

representation.
3. Determine where to apply

continuous & discrete properties
to derive a tractable problem.
e.g. linear system

4. Solve the tractable problem.
e.g. LU factorization

Error 1/Approx 1

Error 2/Approx 2

Error 3/Approx 3

Error 4/Approx 4

Key assumption
There is something in the

problem we can evaluate exactly.
where exactly means up to floating point error

e.g.

f(x) in an integral or derivative
the boundary condition of an ODE

Outline of Topics
1. Polynomial approximations &

piecewise polynomial approximations
(Chapter 8)

2. Numerical differentiation (Chapter 9)
3. Numerical integration (Chapter 10)
4. ODEs and PDEs (Chapter 11, 13, 14)
5. Optimization (Chapter 4)

Reading outline on website

www.cs.purdue.edu/homes/dgleich/
cs314-2016/syllabus.html

Polynomial approximation
Polynomials are one of the most useful ways
of representing 1d functions on a computer.

Alternatives
grid of points images
sins/cosines signals/MP3s
radial basis functions machine learning

Polynomial approximation.
Key points
Not all sets of point to “evaluate” are equal.
1d case is “solved”
Many different ways to write polynomials that
“fit” a set of points exactly, but they have
different numerical properties.
Piecewise polynomials are flexible models
Polynomial methods do not generalize to
higher dimensions easily.

Numerical differentiation
Given a computer representation of a function, how
can we determine or approximate it’s derivative?

f is 1d 2d X-d

A regular/uniform grid of points

A polynomial

A set of sines/cosines

A scattered set of data

Numerical differentiation
Key points
Numerical accuracy is tricky with regular grids
Polynomial representations make
differentiation “easy”
There are some standard approaches to
improve the accuracy of numerical derivatives
on regular grids. (Richardson extrapolation)

… numerical integration …
… ODES and PDES …

… optimization …

coming soon!

Why polynomial approximation?
Weierstrass approximation theorem

Every continuous function
on an interval [a,b] can be
uniformly approximated by
as closely as desired by a
polynomial

f(x)p(x)

x

worst approx-
imation in a
uniform sense

uniform error = max

x2[a,b]

|f (x) � p(x)|

How to do polynomial interpolation?
We’ll see a bunch of different ways to do this!

The easiest – via Least squares!

INTRODUCTION TO LEAST SQUARES

David F. Gleich ⋅ CS ��� ⋅ Purdue University
October 5, 2016

� ��� �-����

Also called the Euclidean norm

�x� = �x�2 =
���� n�

i=1
x2i

� ����� ������� ��������

������� ����

Galileo wanted to �nd a mathematical relationship
between ball height and horizontal distance in the following
experiment.

height

distance

height distance
�.��� �.���
�.��� �.���
�.��� �.���
�.��� �.���

������� �����

Suppose we have four college football teams
�. Purdue
�. IU
�. Notre Dame
�. Michigan

Purdue beats Notre Dame by � points: �� to ��
Michigan beats Purdue by � points: �� to ��
Purdue beats IU by � points: �� to ��
Michigan betas IU by � points: �� to �
Notre Dame beats IU by � points: �� to ��

Suppose we give Purdue 100 ranking points, how many points
should the other teams get to predict the score di�erentials?

�

QUIZ
Q1. If we could choose where
to “see” the function f, would it
make a difference to how well
we can interpolate it with
polynomials?
Q2. How can we fit a
degree n polynomial to
n+1 points?
Q3. Which set of points is
better to interpolate f,
red/uniform or blue/clustered?

Uniform

Clustered

How to do polynomial interpolation?
We’ll see a bunch of different ways to do this!

The easiest – via Least squares!

minimize

�����

2

6664

1 x1 x

2
1 ... x

n

1
1 x2 x

2
2 ... x

n

2
...

...
...

...
...

1 x

m

x

2
m

... x

n

m

3

7775

| {z }
A

2

666664

c0
c1
c2
...

c

n

3

777775

| {z }
x

�

2

6664

y1
y2
...

y

m

3

7775

| {z }
b

�����

2

2

How to do polynomial interpolation?
"""c = polyfit(x,y,n): fit the coefficients of a poly
interp. fits a degree n polynomial to the data x,y"""
function polyfit(x,y,n)

m = length(x) # datapoints
A = zeros(m,n+1) # matrix
for i=1:m

xi = 1.
for j=1:n+1

A[i,j] = xi
xi *= x[i]

end
end

return A\y # least-squares or linsys
end

Polynomial interpolation

… demo …
Lecture-26 on Juliabox!

Error in polynomial interpolation
THEOREM 8.4.1

Assume
that f is n + 1 times cont. diff. in a region [a, b], and

that x

0

, ... , x

n

are distinct points in [a, b].

Let
p(x) be the unique polynomial of degree n

that interpolates f at x

0

, ... , x

n

.

Then

f (x) � p(x) =

1

(n + 1)!

f

(n+1)

(⇠
x

)

nY

j=0

(x � x

i

)

for some point ⇠
x

in [a, b] that depends on x .

Analysis

f (x) � p(x) =
1

(n + 1)!
f

(n+1)(⇠
x

)
nY

j=0

(x � x

i

)

Goes down with n

Hard to control if
the n+1 derivative
isn’t well behaved.

A polynomial that is
zero at each xi if this
is necessarily large,
we’ll study this!

Interpolation at Chebyshev points
THEOREM 8.5.1
Let
f be a continuous function on [�1, 1]

pn its degree n interpolant at Chebyshev points

p⇤
n its best approximation among n degree

polynomials in the uniform error

Then
uniform error in pn  (2 +

2

⇡ log n)uniform error in p⇤
n

pn converges exponentially fast to f if f is smooth

Analysis
If we interpolate f at Chebyshev points, we
get something close to the best possible
result

and if f is smooth, the polynomial
approximation always converges
“fast”

ApproxFun demo

