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In this class:

• A quick overview of the 
numerical methods 
perspective on applied 
mathematics

• Overview of Unit 3.

• Interpolation “grids”

• Polynomial interpolation 
via least squares.

• APPROXFUN



Applied mathematics

functions
not

numbers

Find a function with this property
Find a function that satisfies this equation

Find a property of this function



Applied mathematics

What is the value of the integral of a function?
What is the derivative function of a given function?
What function solves a given differential equation?



Problems in applied math

In this part of the course, it is much harder to 
find “simple real world” examples as the 

complexities of realistic problems multiply.

Many of the problems we’ll study are 
abstractions of more intricate real-world 

problems.



Numerical Methods for Applied Math
1. Take the continuous problem. 

e.g. integral
2. Compute a discrete 

representation. 
3. Determine where to apply 

continuous & discrete properties 
to derive a tractable problem. 
e.g. linear system

4. Solve the tractable problem. 
e.g. LU factorization

Error 1/Approx 1

Error 2/Approx 2

Error 3/Approx 3

Error 4/Approx 4



Key assumption
There is something in the 

problem we can evaluate exactly.
where exactly means up to floating point error

e.g. 

f(x) in an integral or derivative
the boundary condition of an ODE



Outline of Topics
1. Polynomial approximations & 

piecewise polynomial approximations
(Chapter 8)

2. Numerical differentiation (Chapter 9)
3. Numerical integration (Chapter 10)
4. ODEs and PDEs (Chapter 11, 13, 14)
5. Optimization (Chapter 4)



Reading outline on website

www.cs.purdue.edu/homes/dgleich/
cs314-2016/syllabus.html



Polynomial approximation
Polynomials are one of the most useful ways 
of representing 1d functions on a computer.

Alternatives
grid of points images
sins/cosines signals/MP3s
radial basis functions machine learning



Polynomial approximation.
Key points
Not all sets of point to “evaluate” are equal.
1d case is “solved”
Many different ways to write polynomials that 
“fit” a set of points exactly, but they have 
different numerical properties.
Piecewise polynomials are flexible models
Polynomial methods do not generalize to 
higher dimensions easily.



Numerical differentiation
Given a computer representation of a function, how 
can we determine or approximate it’s derivative?

f is 1d 2d X-d

A regular/uniform grid of points

A polynomial

A set of sines/cosines

A scattered set of data



Numerical differentiation
Key points
Numerical accuracy is tricky with regular grids
Polynomial representations make 
differentiation “easy”
There are some standard approaches to 
improve the accuracy of numerical derivatives 
on regular grids. (Richardson extrapolation)



… numerical integration …
… ODES and PDES …

… optimization …

coming soon!



Why polynomial approximation?
Weierstrass approximation theorem

Every continuous function 
on an interval [a,b] can be 
uniformly approximated by 
as closely as desired by a 
polynomial 

f(x)p(x)

x

worst approx-
imation in a 
uniform sense

uniform error = max

x2[a,b]

|f (x) � p(x)|



How to do polynomial interpolation?
We’ll see a bunch of different ways to do this!

The easiest – via Least squares!

INTRODUCTION TO LEAST SQUARES

David F. Gleich ⋅ CS ��� ⋅ Purdue University
October 5, 2016
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Also called the Euclidean norm
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Galileo wanted to �nd a mathematical relationship
between ball height and horizontal distance in the following
experiment.

height

distance

height distance
�.��� �.���
�.��� �.���
�.��� �.���
�.��� �.���

������� �����

Suppose we have four college football teams
�. Purdue
�. IU
�. Notre Dame
�. Michigan

Purdue beats Notre Dame by � points: �� to ��
Michigan beats Purdue by � points: �� to ��
Purdue beats IU by � points: �� to ��
Michigan betas IU by � points: �� to �
Notre Dame beats IU by � points: �� to ��

Suppose we give Purdue 100 ranking points, how many points
should the other teams get to predict the score di�erentials?

�



QUIZ
Q1. If we could choose where 
to “see” the function f, would it 
make a difference to how well 
we can interpolate it with 
polynomials?
Q2. How can we fit a 
degree n polynomial to 
n+1 points?
Q3. Which set of points is 
better to interpolate f, 
red/uniform or blue/clustered?

Uniform

Clustered



How to do polynomial interpolation?
We’ll see a bunch of different ways to do this!

The easiest – via Least squares!

minimize
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How to do polynomial interpolation?
"""c = polyfit(x,y,n): fit the coefficients of a poly 
interp. fits a degree n polynomial to the data x,y"""
function polyfit(x,y,n)    

m = length(x) # datapoints
A = zeros(m,n+1)  # matrix 
for i=1:m 

xi = 1.        
for j=1:n+1            

A[i,j] = xi            
xi *= x[i]        

end
end    

return A\y      # least-squares or linsys
end



Polynomial interpolation

… demo …
Lecture-26 on Juliabox!



Error in polynomial interpolation
THEOREM 8.4.1

Assume
that f is n + 1 times cont. diff. in a region [a, b], and

that x

0

, ... , x

n

are distinct points in [a, b].

Let
p(x) be the unique polynomial of degree n

that interpolates f at x

0

, ... , x

n

.

Then

f (x) � p(x) =

1

(n + 1)!

f

(n+1)

(⇠
x

)

nY

j=0

(x � x

i

)

for some point ⇠
x

in [a, b] that depends on x .



Analysis

f (x) � p(x) =
1

(n + 1)!
f

(n+1)(⇠
x

)
nY

j=0

(x � x

i

)

Goes down with n

Hard to control if 
the n+1 derivative 
isn’t well behaved.

A polynomial that is 
zero at each xi if this 
is necessarily large, 
we’ll study this!



Interpolation at Chebyshev points
THEOREM 8.5.1
Let
f be a continuous function on [�1, 1]

pn its degree n interpolant at Chebyshev points

p⇤
n its best approximation among n degree

polynomials in the uniform error

Then
uniform error in pn  (2 +

2

⇡ log n)uniform error in p⇤
n

pn converges exponentially fast to f if f is smooth



Analysis
If we interpolate f at Chebyshev points, we 
get something close to the best possible 
result

and if f is smooth, the polynomial 
approximation always converges 
“fast”



ApproxFun demo


