Numerical and Scientific Computing with Applications David F. Gleich CS 314, Purdue

In this class:

- Quick review of Power, block power & SVD
- List of topics
- Problems from Quiz

October 19, 2016

Next class MIDTERM 2

Next next class

Background I assume

Linear algebra Calculus Differential equations Discrete math Programming Probability

I'll try to remind you what you need to know

Topics we've covered

Week 5-6

Intro to matrix methods Matrix-matrix multiplication GEMM Memory hierarchy Gaussian elimination LU factorization Pivoting Week 7 Number of ops in LU Least squares problems Orthogonal matrices The Normal Equations Geometry of least squares Gram-Schmidt and QR

Week 8

Types of inaccuracies that The power method for arise in solving problems Condition numbers Algorithm stability Backwards stable algorithm Forward error Condition number of a linear system Iterative methods Intro to eigenvalues

Week 9

eigenvalues. The block power method for eigenvalues (today) SVD (today)

Homework questions

Homework 3

Operation counts in simple matrix products

Results of simple matrix computations (e.g. diagonal-timesmatrix)

How to implement GEMM

Using matrix-operations to do geometry modifications

Creating a matrix to shrink an image

Homework 4

A production question The PageRank linear system Finding a problem with the LU factorization Using the QR method to solve leastsquares Setting up sports ranking problems Setting up polynomial fitting Condition numbers

Iterative methods

Requests for material

LU with pivoting (18)

- How to get L
- Pivoting (3)Conditioning (2)
- Condition number (3)
- And matrices
- Least squares (4)
- Regression
- QR & Least sq (2)
- Ranking

Forward error

- Accuracy definition
 Backwards error
- Stability definition
 QR factorization (10)
 Calculation examples (2)
 Norm examples
 MatMul cube

Requests for new Material

Quiz review