
More Conditioning & Iterative methods!
G&C – Chapter 7.4, Chapter 12.2

Numerical and Scientific Computing with Applications
David F. Gleich

CS 314, Purdue

October 12, 2016

Finish up Least Squares
Iterative & Conditioning

Next class

Eigenvalues
G&C – Chapter 12.1

Next next class

In this class:

• What you need to know
about iterative methods for
your homework. (We’ll

• How we can use QR to
solve a least squares
problem.

• How any computation can
be wrong on a computer:
ill-conditioned problems
and unstable algorithms.

How to solve Ax=b another way.
When A is super-large (1 million-by-1 million)
then using GE and LU often don’t work.
But these large matrices are often very special (see handout).
• They are sparse, which means they have many zeros and

computing y = Ax is fast and easy
• They are structured, which means computing y = Ax is fast

Think about the matrices we saw for resizing
images on the homework. (32x32 -> 16x16)
there were tons of zeros!

The key ideas (1)
If we have a big matrix, but we also have a
program to compute y = Ax (matvec) then we
can still solve Ax = b!
• We can check a potential solution y via the quantity

r = b – A y (matvec and subtract) and || r ||
• r is called the residual and
• || r || / || b || is the relative residual

If relative residual is small (10-8), then we have
a good enough solution,
=> so we can tell when to stop

The key ideas (2)
If we have a big matrix, but we also have a
program to compute y = Ax (matvec) then we
can still solve Ax = b!
• There are a variety of ways to turn x = A-1 b into a

sequence of matvecs.
• The easiest is

which doesn’t always work, but will for our cases.
• Evaluating k terms here only involves matvecs with A!

A�1b = b + (� � A)b + (� � A)2b + (� � A)3b + ...

The overall idea
If we have a big matrix, but we also have a
program to compute y = Ax (matvec) then we
can still solve Ax = b!
• Use

• Evaluate k terms, check relative residual.
• If not small enough, evaluate the next term and repeat.

This is an iteration and hence iterative methods

A�1b = b + (� � A)b + (� � A)2b + (� � A)3b + ...

The overall idea simplified
We’ll work through this in class, but this idea is
actually super simple once you work out the a
few other facts.
function richardson(A,b;tol=10-8,niter=10000,omega=1.)
x = b
normb = norm(b)
for k=1:niter
r = b – A*x
if norm(r)/norm(b) <= tol, break, end
x = x + omega*r

end
return x

