Numerical and Scientific Computing with Applications
David F. Gleich
CS 314, Purdue

In this class:

What you need to know
about iterative methods for
your homework. (We’ll

How we can use QR to
solve a least squares
problem.

How any computation can
be wrong on a computer:
ill-conditioned problems
and unstable algorithms.

October 12, 2016

Finish up Least Squares
Iterative & Conditioning

Next class

More Conditioning & lterative methods!
G&C — Chapter 7.4, Chapter 12.2

Next next class

Eigenvalues
G&C — Chapter 12.1

How to solve Ax=b another way.

When A is super-large (1 million-by-1 million)
then using GE and LU often don’t work.

But these large matrices are often very special (see handout).

 They are sparse, which means they have many zeros and
computing y = Ax is fast and easy

* They are structured, which means computing y = Ax is fast
Think about the matrices we saw for resizing

images on the homework. (32x32 -> 16x16)
there were tons of zeros!

The key ideas (1)

If we have a big matrix, but we also have a
program to compute y = Ax (matvec) then we

can still solve Ax = D!

 We can check a potential solution y via the quantity
r=b - Ay (matvec and subtract) and || r ||

 ris called the residual and
« ||lr||/]|lb||is the relative residual

If relative residual is small (10-8), then we have
a good enough solution,
=> SO we can tell when to stop

The key ideas (2)

If we have a big matrix, but we also have a
program to compute y = Ax (matvec) then we
can still solve Ax = !

« There are a variety of ways to turn x = A7 b into a
sequence of matvecs.

« TJhe easiest s
A 'b=b+{I—-Ab+I—-A?b+I— A°b+...

which doesn’t always work, but will for our cases.
« Evaluating k terms here only involves matvecs with Al

The overall idea

If we have a big matrix, but we also have a
program to compute y = Ax (matvec) then we
can still solve Ax = !

« Use

A'b=b+(I—Ab+I - A?b+T— A°Db+...

« FEvaluate k terms, check relative residual.
* If not small enough, evaluate the next term and repeat.

This Is an iteration and hence iterative methods

The overall idea simplified

We'll work through this in class, but this idea is

actually super simple once you work out the a

few other facts.

function richardson(A,b;tol1=10-8,niter=10000, omega=1.)
X =Db
normb = norm(b)
for k=1l:niter
r=Db — AxX
if norm(r)/norm(b) <= tol, break, end
X = X + omegakr
end
return x

