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Finish up Least Squares 
Iterative & Conditioning

Next class

Eigenvalues
G&C – Chapter 12.1

Next next class

In this class:

• What you need to know 
about iterative methods for 
your homework. (We’ll 

• How we can use QR to 
solve a least squares 
problem.

• How any computation can 
be wrong on a computer: 
ill-conditioned problems 
and unstable algorithms. 



How to solve Ax=b another way.
When A is super-large (1 million-by-1 million) 
then using GE and LU often don’t work. 
But these large matrices are often very special (see handout).
• They are sparse, which means they have many zeros and 

computing y = Ax is fast and easy
• They are structured, which means computing y = Ax is fast

Think about the matrices we saw for resizing 
images on the homework. (32x32 -> 16x16) 
there were tons of zeros! 



The key ideas (1)
If we have a big matrix, but we also have a 
program to compute y = Ax (matvec) then we 
can still solve Ax = b!
• We can check a potential solution y via the quantity 

r = b – A y (matvec and subtract) and || r ||
• r is called the residual and 
• || r || / || b || is the relative residual

If relative residual is small (10-8), then we have 
a good enough solution, 
=> so we can tell when to stop



The key ideas (2)
If we have a big matrix, but we also have a 
program to compute y = Ax (matvec) then we 
can still solve Ax = b!
• There are a variety of ways to turn x = A-1 b into a 

sequence of matvecs. 
• The easiest is 

which doesn’t always work, but will for our cases. 
• Evaluating k terms here only involves matvecs with A!

A�1b = b + (� � A)b + (� � A)2b + (� � A)3b + ...



The overall idea
If we have a big matrix, but we also have a 
program to compute y = Ax (matvec) then we 
can still solve Ax = b!
• Use

• Evaluate k terms, check relative residual. 
• If not small enough, evaluate the next term and repeat. 

This is an iteration and hence iterative methods

A�1b = b + (� � A)b + (� � A)2b + (� � A)3b + ...



The overall idea simplified 
We’ll work through this in class, but this idea is 
actually super simple once you work out the a 
few other facts.
function richardson(A,b;tol=10-8,niter=10000,omega=1.)
x = b 
normb = norm(b)
for k=1:niter
r = b – A*x
if norm(r)/norm(b) <= tol, break, end
x = x + omega*r

end
return x


