Numerical and Scientific Computing with Applications David F. Gleich CS 314, Purdue

October 12, 2016

In this class:

- What you need to know about iterative methods for your homework. (We'll
- How we can use QR to solve a least squares problem.
- How any computation can be wrong on a computer: ill-conditioned problems and unstable algorithms.

Finish up Least Squares Iterative & Conditioning

Next class

More Conditioning & Iterative methods! G&C – Chapter 7.4, Chapter 12.2

Next next class

Eigenvalues G&C – Chapter 12.1

How to solve Ax=b another way.

When A is super-large (1 million-by-1 million) then using GE and LU often don't work.

But these large matrices are often very special (see handout).

- They are sparse, which means they have many zeros and computing y = Ax is fast and easy
- They are structured, which means computing y = Ax is fast

Think about the matrices we saw for resizing images on the homework. (32x32 -> 16x16) there were tons of zeros!

The key ideas (1)

If we have a big matrix, but we also have a *program* to compute y = Ax (matvec) then we can still solve Ax = b!

- We can check a potential solution y via the quantity
 r = b A y (matvec and subtract) and || r ||
- r is called the residual and
- || r || / || b || is the relative residual

If relative residual is small (10^{-8}), then we have a *good enough* solution,

=> so we can tell when to stop

The key ideas (2)

If we have a big matrix, but we also have a *program* to compute y = Ax (matvec) then we can still solve Ax = b!

- There are a variety of ways to turn $x = A^{-1}$ b into a sequence of matvecs.
- The easiest is

$$A^{-1}b = b + (I - A)b + (I - A)^{2}b + (I - A)^{3}b + ...$$

which doesn't always work, but will for our cases.

• Evaluating k terms here only involves matvecs with A!

The overall idea

If we have a big matrix, but we also have a *program* to compute y = Ax (matvec) then we can still solve Ax = b!

• Use

$$A^{-1}b = b + (I - A)b + (I - A)^{2}b + (I - A)^{3}b + ...$$

- Evaluate k terms, check relative residual.
- If not small enough, evaluate the next term and repeat.

This is an iteration and hence iterative methods

The overall idea simplified

We'll work through this in class, but this idea is actually super simple once you work out the a few other facts. function richardson(A,b;tol=10⁻⁸,niter=10000,omega=1.) x = b normb = norm(b)

for k=1:niter

r = b - A * x

if norm(r)/norm(b) <= tol, break, end</pre>

```
x = x + omega*r
```

end

return x