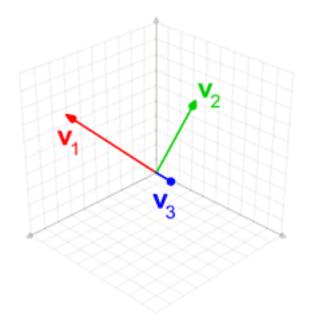
Numerical and Scientific Computing with Applications David F. Gleich CS 314, Purdue

In this class:

October 5, 2016

Least squares & QR

- A geometric view on solving Least squares problems
- The QR factorization and Gram-Schmidt

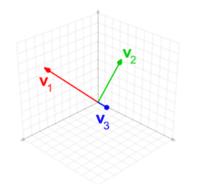

Next class

Finish up Least Squares & conditioning G&C – Chapter 6

Next next class

Iterative methods G&C – Chapter 7.6

QR Factorization and the Gram Schmidt process



Consider a set of vectors v_1 to v_n . Set u_1 to be v_1 .

Create a new vector u_2 by removing any "component" of u_1 from v_2 .

Create a new vector u_3 by removing any "component" of u_1 and u_2 from v_3 .

QR Factorization and the Gram Schmidt nrocess

 $\mathbf{v}_1 = a_1 \mathbf{u}_1$ $\mathbf{v}_2 = b_1 \mathbf{u}_1 + b_2 \mathbf{u}_2$ $\mathbf{v}_3 = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + c_3 \mathbf{u}_3$

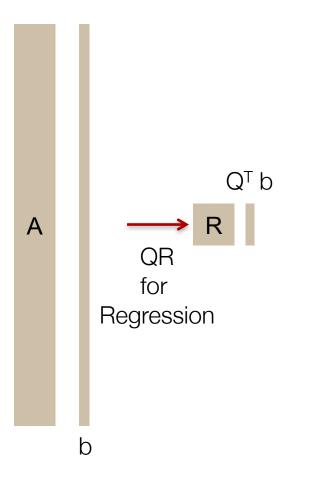
$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \dots \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{v}_3 & \dots \end{bmatrix} \begin{bmatrix} a_1 & b_1 & c_1 & \dots \\ 0 & b_2 & c_2 & \dots \\ 0 & 0 & c_3 & \dots \end{bmatrix}$$

QR Factorization and the Gram Schmidt nrocess

 $V_1 = a_1 U_1$

 $\mathbf{v}_2 = b_1 \mathbf{u}_1 + b_2 \mathbf{u}_2$

 $\mathbf{V}_3 = C_1 \mathbf{U}_1 + C_2 \mathbf{U}_2 + C_3 \mathbf{U}_3$



What it's usually

V = URwritten as by others A = QR

All vectors in U are at right angles, i.e. they are decoupled

More about how to compute a regression

 $\min \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|^2$

 $= \min \|\boldsymbol{Q}\boldsymbol{R}\boldsymbol{x} - \boldsymbol{b}\|^2$

Orthogonal or "right angle" matrices don't change vector magnitude

 $= \min \|\boldsymbol{Q}^{T}\boldsymbol{Q}\boldsymbol{R}\boldsymbol{x} - \boldsymbol{Q}^{T}\boldsymbol{b}\|^{2}$

··· What goes here;

 $= \min \|\boldsymbol{R}\boldsymbol{x} - \boldsymbol{Q}_1^T \boldsymbol{b}\|^2$

This is a linear system!