In this class:

- How the computer architecture affects how we implement an algorithm
Matrix methods

Matrix multiplication \(AB = C \)

Linear systems \(Ax = b \)

Eigenvalue problems \(Ax = \lambda x \)
GEMM

GEneral Matrix-Multiply

One of the BLAS routines
“Basic Linear Algebra Subroutines”

Used by LAPACK
“Linear Algebra” Package
Solving Ax=b, Eigenvalues, etc.
Optimizing GEMM

\[c_{ij} = \sum_k a_{ik} b_{kj} \quad \text{for all } i, j \]

https://github.com/flame/how-to-optimize-gemm/wiki

By Robert Van De Gejin
OLD = MMult0, NEW = MMult-4x4-15
What a computer looks like!
(To a programming language)
What a computer looks like!
(To an algorithm)

CPU

Memory
Super fast memory!

Memory
Fast memory!
Your RAM
But …

CPU – Access in 0.5 nanoseconds – 32 doubles

L1 - Super-fast – Access 1-2 nanoseconds – 1000 doubles

L2 - Fast – Access in 5-10 nanoseconds – 200000 doubles

L3 - Fast- - Access in 10 nanoseconds – 250,000 doubles

RAM – Access in 25-100 nanoseconds – 100,000,000 doubles

Each layer is much slower!
Computer Memory Hierarchy

- **Top Layer:**
 - Processor registers
 - Very fast, very expensive

- **Middle Layer:**
 - Processor cache
 - Very fast, very expensive

- **Bottom Layer:**
 - Random access memory
 - Fast, affordable

- **Immediate Term:**
 - Small size
 - Small capacity
 - Power on

- **Very Short Term:**
 - Medium size
 - Medium capacity
 - Power on

- **Power on:**
 - Immediate term

http://en.wikipedia.org/wiki/Memory_hierarchy
OLD = MMult0, NEW = MMult-4x4-15

Why does this one get FASTER???

Memory hierarchy explains why this one gets slower

4 MB = “L3” cache
250,000 doubles!

\[c_{ij} = \sum_{k} a_{ik} b_{kj} \text{ for all } i, j \]
The MatMul Cube!

$$A = \begin{bmatrix}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{bmatrix} \quad \quad B = \begin{bmatrix}
b_{1,1} & b_{1,2} & b_{1,3} \\
b_{2,1} & b_{2,2} & b_{2,3} \\
b_{3,1} & b_{3,2} & b_{3,3}
\end{bmatrix}$$

$$c_{ij} = \sum_k a_{ik} b_{kj} \text{ for all } i, j$$

Your quiz! Explain how to compute an entry in the matrix C via this cube.
void MY_MMult(int m, int n, int k, double *a, int lda, double *b, int ldb, double *c, int ldc) {
 int i, p, pb, ib; /* This time, we compute a mc x n block of C by a call to the InnerKernel */
 for (p=0; p<k; p+=kc) {
 pb = min(k-p, kc);
 for (i=0; i<m; i+=mc) {
 ib = min(m-i, mc);
 InnerKernel(ib, n, pb, &A(i,p), lda, &B(p, 0), ldb, &C(i,0), ldc, i==0);
 }
 }
}

void InnerKernel(int m, int n, int k, double *a, int lda, double *b, int ldb, double *c, int ldc, int first_time) {
 int i, j;
 double packedA[m * k];
 static double packedB[kc*nb]; /* Note: using a static buffer is not thread safe... */
 for (j=0; j<n; j+=4) { /* Loop over the columns of C, unrolled by 4 */
 if (first_time)
 PackMatrixB(k, &B(0, j), ldb, &packedB[j*k]);
 for (i=0; i<m; i+=4) {
 /* Loop over the rows of C */
 /* Update C(i,j), C(i,j+1), C(i,j+2), and C(i,j+3) in one routine (four inner products) */
 if (j == 0)
 PackMatrixA(k, &A(i, 0), lda, &packedA[i*k]);
 AddDot4x4(k, &packedA[i*k], 4, &packedB[j*k], k, &C(i,j), ldc);
 }
 }
}