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1 examples

Malthusian population growth (Isn’t this one awe-
some term? Malthusian!) �is is the idea that pop-
ulation grows at a rate proportional to the current
population. So if y(t) is the population at time t, then

dy
dt

= Cy(t).

�is gives the exponential solution from initial popu-
lation y(0)

y(t) = y(0)eCt .

Hooke’s law

d2y
dt2

= −ky.

Rabbits & Foxes Or the Lotka-Volterra system.

2 general form

�e general form of the problem we’ll work with is:

dy
dt

= f (t, y)

y′ = f (t, y)
But this also holds for systems:

[
dy
dt
dz
dt
] = [

f (t, y, z)
д(t, y, z)]

For these, we usually just write:

dy
dt

= f(t, y)

where we treat y(t) as a vector of d terms, and f as a
vector of d terms.

Malthusian d = 1 (a scalar problem) and

f (t, y) = Cy.

Hooke’s law d = 2 (a system problem) and

f (t, y) = [
0 1
−k 1] y, where y = [

position(t)
velocity(t)] .

Rabbits and Foxes

3 properties of odes

For our rigorous analysis of ODEs to work, we need a few assumptions: AWell-posed problem and a Unique
solution. Your book has technical de�nitions, here, let’s use:

Well-posed small changes don’t change things.

Unique starting from y(0) there is only one solution.
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4 our first method

In general
dy
dt

= f (t, y) y(0) = s

An example

5 definitions

Consider a one-step method: yk+1 = yt + hstep(yt , t, h). �e step stu� is what you
would compute in your method, for instance, in forward Euler, step(y, t, h) = f (t, y).

A method is consistent if limh→0 step(y, t, h) = f (t, y). So that means that if we took
an in�nitesimally small step, we’d do the right thing.

Let y(t) solve the ODE.�e local truncation error is the di�erence:

y(t + h) − y(t)
h

− step(y(t), t, h).

�is can be interpreted as how much does step di�er from the slope of the true solution?
A one step method is stable if there is a constant K and a step size h0 such that the

di�erence between two solutions yn , ỹn started from y0 − ỹ0
∣yn − ỹn ∣ ≤ K∣y0 − ỹ0∣.

�is notion of stability isn’t very important for us. Almost all of the methods we’ll look at
are stable in this sense, and the book proves that any one-step method of the form above
is stable for an ODE with a Lipschitz function f (t, h).
THEOREM 1 (11.2.2) If the method yk+1 = yt + hstep(yt , t, h) is stable and consistent, with
local truncation error O(hp), then the global error is O(hp).

6 lipschitz?

A function is called Lipschitz continuous if ∣ f (x) − f (y)∣ ≤ L∣x − y∣ for all x , y. �is
is a SUPER strong notion of continuous. If you haven’t seen it before, don’t worry about it
– it just means continuous enough for small changes not to become a problem.

7 julia ’s ode suite
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8 stiff equations

Chemical Kinetics (From Leveque, Finite Di�erence Methods, Chapter 7)
Imagine yourself as a chemical engineering. We need to produce the molecule AB from
the constituent molecules A and B. �is occurs with rate K1. But AB also breaks down
into A and B with rate K2. Can you get a solution of 99%AB only? (Assume we can freeze
the solution to stop both reactions.)

�e mathematical model Forward Euler solution

u1 = concentration of A
u2 = concentration of B
u3 = concentration of AB

u′1 = −K1u1u2 + K2u3

u′2 = −K1u1u2 + K2u3

u′3 = K1u1u2 − K2u3

If K1 ≫ K2, then we can get good purity, but it may be hard to accurately simulate the
ODEs. �is is the hallmark of sti� equations, those with vastly di�erent “time scales”

9 absolute stability

Test equation 1 y′ = λy
Test equation 2 y′ = Ay
If λ < 0, then y → 0 as t →∞

If eigenvalues of A have real part < 0, then y → 0 as t →∞

Consider a one-step method yk+1 = yt + hstep(yt , t, h) for y′ = λy.
Let λ be real or complex.
�e region of absolute stability is the set {hλ} where yk → 0 as k →∞.
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10 backward euler

11 lingo

ODE
ordinary di�erential equation, just one type of deriva-
tive, usually in a variable called time

BVP
boundary value problem, an ODE with one, or mul-
tiple end-points �xed. (think “starting at time t0”) as
one end-point of the time grid.

PDE
partial di�erential equation, usually involves deriva-
tives of space and time.

time grid, time mesh
the set of times where we have an approximate solu-
tion of an ODE or PDE

scheme
amethod to evaluate or integrate anODE, e.g. yk+1 =
yk + step(yk , t, h).
integrator
the name for an overarching approach or function
that, given an initial condition of an ODE, produces
an approximate solution.

sympletic integrator
A very special type of integrator for systems of equa-
tions that are designed for systems of motion like
the spring system. �ese systems are designed to
preserve energy over time.

multi-step methods
Amethod that uses the solution frommultiple points
in time. We don’t discuss these.

Runge-Kutta
A class of high-order methods for integrating ODEs
that only use one-step. �e RK45 method is one of
the most standard choices.

implicit
a scheme where the function evaluation depends im-
plicitly on the solution at the next time step. Implicit
schemes require solving a system of equations (pos-
sibly nonlinear)
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