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1 EXAMPLES 2 GENERAL FORM

Malthusian population growth  (Isn’t this one awe- The general form of the problem we’ll work with is:
some term? Malthusian!) This is the idea that pop-

ulation grows at a rate proportional to the current dy = f(t,y)
population. So if y(t) is the population at time ¢, then dt
dy _ . y'=r(ty)
dar 7 (t). But this also holds for systems:
This gives the exponential solution from initial popu- dy (t )
lation y(0) gt | = ft .2
=1 [9(ty.2)

y(t) = y(0)e.

, For these, we usually just write:
Hooke’s law

dzy

&y =f(t,y
7=—ky. 7 (£.y)

where we treat y(t) as a vector of d terms, and f as a
vector of d terms.

Malthusian d =1 (a scalar problem) and
f(t.y)=Cy.

Hooke’s law  d = 2 (a system problem) and

Flty) - l_Ok }]y’ where y = lposition(t)] .

Rabbits & Foxes  Or the Lotka-Volterra system. velocity(#)

Rabbits and Foxes

3 PROPERTIES OF ODES

For our rigorous analysis of ODEs to work, we need a few assumptions: A Well-posed problem and a Unique
solution. Your book has technical definitions, here, let’s use:

Well-posed  small changes don’t change things.

Unique starting from y(0) there is only one solution.



4 OUR FIRST METHOD

In general An example

Vo ity y0)=s

5 DEFINITIONS

Consider a one-step method: yx.; = y; + hstep(y;, t, h). The step stuff is what you
would compute in your method, for instance, in forward Euler, step(y, t, h) = f(¢, y).

A method is consistent if lim;, o step(y, t, h) = f(t, ). So that means that if we took
an infinitesimally small step, wed do the right thing.

Let y(t) solve the ODE. The local truncation error is the difference:

y(t+h)-y(1)

h —step(y(t), t, h).

This can be interpreted as how much does step differ from the slope of the true solution?
A one step method is stable if there is a constant K and a step size hy such that the
difference between two solutions y,,, y, started from yo — o

[yu = 7ul < Klyo = jol-

This notion of stability isn't very important for us. Almost all of the methods we’ll look at
are stable in this sense, and the book proves that any one-step method of the form above
is stable for an ODE with a Lipschitz function f(¢, h).

THEOREM 1 (11.2.2) If the method yi. = y¢ + hstep(y;, t, h) is stable and consistent, with
local truncation error O(hP), then the global error is O(h?).

6 LIPSCHITZ?

A function is called Lipschitz continuous if | f (x) — f(y)| < L|x — y| for all x, y. This
is a SUPER strong notion of continuous. If you haven't seen it before, don’t worry about it
- it just means continuous enough for small changes not to become a problem.

7 JULIA’S ODE SUITE



8 STIFF EQUATIONS

Chemical Kinetics (From Leveque, Finite Difference Methods, Chapter 7)

Imagine yourself as a chemical engineering. We need to produce the molecule AB from
the constituent molecules A and B. This occurs with rate K;. But AB also breaks down
into A and B with rate K,. Can you get a solution of 99%AB only? (Assume we can freeze
the solution to stop both reactions.)

The mathematical model Forward Euler solution

u; = concentration of A
U, = concentration of B
U3 = concentration of AB

ul = —Kyuyuy + Kyus
ng =-Kiuu, + K2M3
u; = K1u1u2 - K2u3

If K; > K, then we can get good purity, but it may be hard to accurately simulate the
ODEs. This is the hallmark of stiff equations, those with vastly different “time scales”

9 ABSOLUTE STABILITY

Test equation1y’ = Ay
Test equation 2y’ = Ay
IfA<0,then y - 0ast— oo

If eigenvalues of A have real part < 0,theny - 0ast — oo

Consider a one-step method yi.1 = y, + hstep(y,, t, h) for y' = Ay.
Let A be real or complex.
The region of absolute stability is the set { hA} where y, — 0 as k — oo.



10 BACKWARD EULER

11 LINGO

ODE
ordinary differential equation, just one type of deriva-
tive, usually in a variable called time

BVP

boundary value problem, an ODE with one, or mul-
tiple end-points fixed. (think “starting at time #,”) as
one end-point of the time grid.

PDE
partial differential equation, usually involves deriva-
tives of space and time.

time grid, time mesh
the set of times where we have an approximate solu-
tion of an ODE or PDE

scheme
amethod to evaluate or integrate an ODE, e.g. yy. =
Vi +step(yi, t, h).

integrator

the name for an overarching approach or function
that, given an initial condition of an ODE, produces
an approximate solution.

sympletic integrator

A very special type of integrator for systems of equa-
tions that are designed for systems of motion like
the spring system. These systems are designed to
preserve energy over time.

multi-step methods
A method that uses the solution from multiple points
in time. We don’t discuss these.

Runge-Kutta

A class of high-order methods for integrating ODEs
that only use one-step. The RK45 method is one of
the most standard choices.

implicit
a scheme where the function evaluation depends im-
plicitly on the solution at the next time step. Implicit

schemes require solving a system of equations (pos-
sibly nonlinear)
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