Figure 12: Angular velocity distribution

Angular velocity is distributed as 

\[ \omega = \frac{\alpha}{r} \]

where \( \alpha \) is the angular acceleration and \( r \) is the radius.

**Angular Acceleration**

Angular acceleration is the rate of change of angular velocity.

\[ \alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2} \]

where \( \theta \) is the angular displacement.

**Angular Speed**

Angular speed is the rate of change of angular displacement.

\[ \omega = \frac{d\theta}{dt} \]

**Angular Velocity**

Angular velocity is the rate of change of angular displacement over a unit time.

\[ \omega = \frac{d\theta}{dt} \]

**Angular Acceleration**

Angular acceleration is the rate of change of angular velocity.

\[ \alpha = \frac{d\omega}{dt} \]

**Angular Speed**

Angular speed is the rate of change of angular displacement.

\[ \omega = \frac{d\theta}{dt} \]

**Angular Acceleration**

Angular acceleration is the rate of change of angular velocity.

\[ \alpha = \frac{d\omega}{dt} \]