Applied mathematics

KEY POINT

Find a function with this property
Find a function that satisfies this equation
Find a property of this function
What is the value of the integral of a function?
What is the derivative function of a given function?
What function solves a given differential equation?

Polynomial approximation

Polynomials are one of the most useful ways of representing 1d functions on a computer.

Numerical Methods for Applied Math

Take the continuous problem. e.g. integral

Compute a discrete representation.
Determine where to apply continuous \& discrete properties to derive a tractable problem.
e.g. linear system

Solve the tractable problem.
e.g. LU factorization

Polynomial approximations

Key points

Alternatives

Why polynomial approximation?

Weierstrass approximation theorem

Every continuous function on an interval [a,b] can be uniformly approximated by as closely as desired by a polynomial

Analysis

$f(x)-p(x)=\frac{1}{(n+1)!} f^{(n+1)}\left(\xi_{x}\right) \prod_{j=0}^{n}\left(x-x_{i}\right)$

Error in polynomial interpolation

THEOREM 8.4.1

Assume

that f is $n+1$ times cont. diff. in a region [a, b], and that x_{0}, \ldots, x_{n} are distinct points in $[a, b]$.
Let
$p(x)$ be the unique polynomial of degree n that interpolates f at x_{0}, \ldots, x_{n}.
Then
$f(x)-p(x)=\frac{1}{(n+1)!} f^{(n+1)}\left(\xi_{x}\right) \prod_{j=0}^{n}\left(x-x_{i}\right)$
for some point ξ_{x} in $[a, b]$ that depends on x.

Interpolation at Chebyshev points

THEOREM 8.5.1

Let

f be a continuous function on $[-1,1]$
p_{n} its degree n interpolant at Chebyshev points
p_{n}^{*} its best approximation among n degree polynomials in the uniform error

Then

uniform error in $p_{n} \leq\left(2+\frac{2}{\pi} \log n\right)$ uniform error in p_{n}^{*} p_{n} converges exponentially fast to f if f is smooth

